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ABSTRACT 

MULTIPLE IMPUTATION OF MISSING DATA IN STRUCTURAL EQUATION  

MODELS WITH MEDIATORS AND MODERATORS USING GRADIENT  

BOOSTED MACHINE LEARNING 

Robert J. Milletich II 
Old Dominion University, 2016 
Director: Dr. Michelle L. Kelley 

 

Mediation and moderated mediation models are two commonly used models for 

indirect effects analysis. In practice, missing data is a pervasive problem in structural 

equation modeling with psychological data. Multiple imputation (MI) is one method used to 

estimate model parameters in the presence of missing data, while accounting for 

uncertainty due to the missing data. Unfortunately, commonly used MI methods are not 

equipped to handle categorical variables or nonlinear variables such as interactions. In this 

study, we introduce a general MI framework that uses the Bayesian bootstrap (BB) method 

to generate posterior inferences for indirect effects and gradient boosted machine learning 

imputation models that can impute missing data in linear and logistic regression models 

with linear and nonlinear effects.  

Two Monte Carlo simulation studies are conducted to examine the empirical 

performance of a BB procedure for estimation and inference of indirect effects and to 

examine the performance of the proposed imputation algorithm in indirect effects analysis. 

Results show that the BB has comparable performance to widely used frequentist methods 

(e.g., delta methods and nonparametric bootstrap with bias-correction) for indirect effects 

analysis for a variety of models and conditions. With missing data, in general, results 

indicate that the proposed MI framework has comparable performance to model-based 
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estimation and other MI algorithms for indirect effects analysis in mediation models; for 

indirect effects analysis in moderated mediation models, results indicate that the proposed 

MI framework outperforms these methods in most conditions. Advantages and limitations 

of the BB as applied to indirect effects analysis are discussed.  
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CHAPTER 1 

INTRODUCTION 

 

1. 1. Overview 

Mediation and moderation analyses are two commonly used statistical techniques in 

psychological research. As described by Baron and Kenny (1986), a mediator is a variable 

that can explain the association between an input variable and an output variable, whereas, 

a moderator is a variable that affects the direction or magnitude of the relation between an 

input variable and an output variable. Although statistically distinct, these two techniques 

have been combined into so-called moderated mediation models (Preacher, Rucker, & 

Hayes, 2007). Moderated mediation models were developed to test hypotheses about 

conditional indirect effects, that is, whether a mediation (or indirect) effect between an 

input variable and outcome variable is influenced (or moderated) by one or more 

variables. Currently in practice, structural equation modeling is the most common 

statistical framework used to test for mediation and moderated mediation effects 

(MacKinnon, Lockwood, & Williams, 2004; Preacher et al., 2007). 

 Unfortunately, a common problem in structural equation modeling with 

psychological data is that of missing data. Although the causes of missing data are 

numerous, missing data can be described based on the pattern and type of missingness. As 

the name implies, the pattern of missingness refers to the manifested pattern of missing 

values in a data set (e.g., univariate nonresponse, monotone, general). The type of 

missingness refers to the underlying functional mechanism that caused the missing values. 

According to Rubin (1976), the type of missing data can be categorized into three distinct 
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categories: (1) missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR).  

The techniques for handling missing data include deletion methods (e.g., listwise 

deletion, pairwise deletion), model-based estimation (e.g., full-information maximum 

likelihood; Archbuckle, 1996), single imputation methods (e.g., unconditional mean 

imputation, conditional mean imputation), and multiple imputation (MI) methods (e.g., 

joint model MI, fully-conditional specification MI; Rubin, 1987; van Buuren, 2007). 

Theoretically, both the pattern and type of missingness determine which missing data 

techniques are appropriate for obtaining statistically unbiased and valid parameter 

estimates in the presence of missing data (Little & Rubin, 2002). In practice, other factors 

such as the sample size and percentage of missingness influence the choice of missing data 

technique. Research has shown that in large samples with small amounts of missingness 

(e.g., < 5%) and a MCAR mechanism, the choice of missing data technique is often 

negligible in parameter estimation (Little & Rubin, 2002). On the contrary, in more 

practical cases (e.g., when data are MAR and missingness > 5%), extensive research has 

continually shown the naïve approaches such as listwise deletion or unconditional mean 

imputation are inferior to model-based estimation and MI approaches for handling missing 

data (van Buuren, 2012).  

The gold standard model-based estimation approach to missing data in structural 

equation models is model-based estimation (e.g., full-information maximum likelihood 

[FIML] and weighted-least squares [WLS]). Research has shown FIML (Enders & Bandalos, 

2001) and WLS (Asparouhov & Muthén, 2010) to work well in SEMs, however, this method 

can fail to converge in scenarios in which the likelihood is too complicated to optimize or 
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there is sparse data (Rubin & Little, 2002). In this case, the more powerful approach is MI. 

In short, a MI procedure consists of generating 𝑀 plausible data sets based on the observed 

data to reflect the uncertainty about the missing data. Complete-data methods are then 

applied to each pseudo-complete data set and the set of 𝑀 estimates are pooled together 

based on Rubin’s (1996) rules for pooling to obtain multiply imputed parameter estimates. 

With the increase in software providing implementations of fully-conditional specification 

(FCS) algorithms, MI has become increasingly attractive, especially because these 

algorithms can handle mixed data types, auxiliary variables, and large amounts of missing 

data.  

 When using MI techniques, the problem of missing data can be viewed from a 

supervised machine learning perspective. For instance, in a typical supervised machine 

learning problem, a training data set is used to estimate or learn the relationship between a 

set of inputs and labels (e.g., discrete values for classification or continuous values for 

regression). Then, the trained model is applied on an independent testing data set where 

the labels are unknown to predict the missing labels. Thus, the goal of supervised machine 

learning is to build a predictive model based on available data with both inputs and labels, 

and use this predictive model to make predictions about unknown labels on independent 

data sets. Note, the term supervised learning is used because labels are provided in the 

training set. From a missing data perspective, when data are missing on a variable 𝐱𝑗 , we 

can partition the data set into two sets, an observed (training) data set and a missing 

(testing) data set based on the observed and missing rows for 𝐱𝑗 , respectively. The 

observed (or training) data in 𝐱𝑗  can be used as the labels in a parametric or nonparametric 

model and the rest of the variables in the data used as inputs. Then, the model can be 
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trained and applied to predict the missing values in 𝐱𝑗  from the missing (or testing) set. 

Therefore, we can easily see that the goals of MI and supervised machine learning are 

similar: Build predictive models based on observed inputs and labels to predict labels on 

data in which only inputs are available. 

 The benefit of viewing missing data from a supervised machine learning vantage is 

that all of the parametric (e.g., linear regression, logistic regression) and nonparametric 

(tree-based models, nearest neighbors) models widely used in machine learning 

applications can easily be applied to predict missingness on any variable. This approach is 

another way of viewing van Buuren’s (2012) framework for FCS using the multiple 

imputation by chained equations (MICE) algorithm. In moderated mediation analyses, 

however, a notable shortcoming of the MICE algorithm is that it does not readily 

incorporate nonlinearities such as interactions in the imputation process. Research has 

shown that ignoring nonlinearities in the imputation model results in biased statistical 

estimates and inferences for regression coefficients of nonlinear terms (Bartlett, Seaman, 

White, & Carpenter, 2014; Doove, van Buuren, & Dusseldorp, 2014; Enders, Baraldi, & 

Cham, 2014; von Hippel, 2009; Seaman, Bartlett, & White, 2012). This study proposes a 

novel MI algorithm to automatically model linear and nonlinear effects in substantive 

models using gradient boosted machine learning models. A Bayesian bootstrap resampling 

strategy is used to generate posterior distributions for Bayesian inference.  

1.2. General Structural Equation Model for Mediation-Type Analyses 

Structural equation modeling is a flexible statistical framework designed to develop 

and test conceptual models. A structural equation model (SEM) has two components: (1) a 

measurement model used to define latent variables using one or more observed indicator 
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variables, and (2) a structural model that links together the latent variables. For testing 

mediation and moderated mediation effects, the most common SEM is path analysis. Path 

analysis can be viewed as a special case of structural equation modeling, one in which only 

single indicator variables are specified for each of the latent variables in the structural 

model (Bollen, 1989). As such, the latent variables are actually just the observed variables.  

A general SEM with observed variables (or path model) that can be used for 

mediation-type models is given by 

 𝛎 = 𝛂 + 𝛃𝛎 + 𝛇 (1.1) 

where 𝛎 is a 𝑝 × 1 vector of observed variables, 𝛂 is a 𝑝 × 1 vector of intercepts, 𝛃 is a 𝑝 × 𝑝 

matrix of regression coefficients, and 𝛇 is a 𝑝 × 1 random vector of errors. It is assumed 

that 𝜻 is independent of 𝛎 and (𝐈 − 𝛃) is non-singular. As such, Equation (1.1) can be 

expressed as  

𝛎 − 𝛃𝛎 = 𝛂 + 𝛇 

(𝐈 − 𝛃)𝛎 = 𝛂 + 𝛇 

𝛎 = (𝐈 − 𝛃)−1(𝛂 + 𝛇). 

When all variables in 𝛎 are continuous, the distribution of 𝛇 is often modeled using a 

multivariate normal distribution with zero mean vector and covariance matrix 𝚿. When 

one or more variables in 𝛎 are discrete, however, the distribution of 𝛇 becomes more 

complicated and assuming a multivariate normal distribution may bias statistical inference 

(Lee, 2007). Fortunately, in models where it is assumed that Cov(ζ𝑖 , ζ𝑗) = 0 for 𝑖, 𝑗 =

1,2, … , 𝑝 where 𝑖 ≠ 𝑗, estimating the joint regression model 𝑓(𝛎|𝛉) is equivalent to 

estimating simpler, often univariate regression models. This latter point provides flexibility 

in models with mixed endogenous variable types. Specific model simplifications will be 
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discussed later.  

 The goal in mediation models is to decompose the influence of a variable or set of 

variables on another variable or set of variables into direct, indirect, and total effects (Fox, 

1980). In all decompositions, the total effects are equal to the sum of the direct effects and 

the indirect effects. Direct effects are those effects unmediated by another variable in the 

model. Figure (1.1) shows a graphical realization of a  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1.1. Graphical representation of a direct effect 𝑋 on 𝑌 based on the linear model 

given in (1.2). The intercept and error are omitted for clarity. 

 

direct effect of 𝑋 on 𝑌 based on the simple linear model 

 
[
𝑋
𝑌
] = [

α𝑋
α𝑌
] + [

0 0
β𝑌∙𝑋 0

] [
𝑋
𝑌
] + [

ζ𝑋
𝜁𝑌
] (1.2) 

where 𝑋 is the exogenous variable, 𝑌 is the endogenous variable, α𝑋 is the intercept for the 

exogenous variable model, α𝑌 is the intercept for the endogenous variable model, β𝑌∙𝑋 is 

the direct effect of 𝑋 on 𝑌, and 𝜁𝑋 and 𝜁𝑌  are the error terms for the exogenous variable 

model and endogenous variable model, respectively. Indirect 

effects, also referred to as unconditional indirect effects, are those effects mediated by at 

least one intervening variable. Figure (1.2) shows a graphical realization of an  

 

𝑋 𝑌 

β𝑌∙𝑋 
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𝐹𝑖𝑔𝑢𝑟𝑒 1.2. Graphical representation of an indirect effect 𝑋 on 𝑌 via a mediating variable 𝑀 

based on the simple mediation model given in (1.3). The intercept and error are omitted 

for clarity. 

 

indirect effect 𝑋 on 𝑌 via the mediating variable 𝑀 based on the simple mediation model  

 
[
𝑋
𝑀
𝑌
] = [

α𝑋
α𝑀
α𝑌
] + [

0 0 0
β𝑀∙𝑋 0 0
β𝑌∙𝑋 β𝑌∙𝑀 0

] [
𝑋
𝑀
𝑌
] + [

ζ𝑋
𝜁𝑀
𝜁𝑌

], (1.3) 

where 𝑋 is the exogenous variable, 𝑀 is the mediator variable, 𝑌 is the endogenous 

variable, α𝑋 is the intercept for the exogenous variable model, α𝑀 is the intercept for the 

mediator variable model, α𝑌 is the intercept for the endogenous variable model, β𝑀∙𝑋 is the 

direct effect of 𝑋 on 𝑀, β𝑌∙𝑋 is the direct effect of 𝑋 on 𝑌, controlling for 𝑀, β𝑌∙𝑀 is the direct 

effect of 𝑀 on 𝑌, controlling for 𝑋, and 𝜁𝑋 , 𝜁𝑀 , 𝜁𝑌  are the error terms for the exogenous 

variable model, mediator variable model, and endogenous variable model, respectively.   

More recently, attention has focused on examining how indirect effects vary across 

levels of another variable or set of variables. These effects are called moderated mediation 

effects or conditional indirect effects. In a simple case, if 𝑌 is an endogenous variable and 𝑋 

and 𝑊 are two exogenous variables, a moderation (or interaction) effect exists if the 

regression of 𝑌 on 𝑋 is conditional upon the value of 𝑊. In other words, the direct effect of 

𝑋 on 𝑌 is not additive across values of 𝑊. Figure (1.3) shows a graphical realization of a 

𝑋 𝑌 

β𝑀∙𝑋 𝑀 

β𝑌∙𝑋 

β𝑌 ∙𝑀 
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moderated effect 𝑋 on 𝑌 conditional  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1.3. Graphical representation of a moderation effect 𝑋 on 𝑌 conditional on 𝑊 

variable 𝑀 based on the moderation model given in (1.4). The intercept, errors, and 

covariance between 𝑋 and 𝑊 are omitted for clarity. 

 

on the variable 𝑊 based on the linear model,   

 

[

𝑋
𝑊
𝑋𝑊
𝑌

] = [

α𝑋
α𝑊
α𝑋𝑊
α𝑌

] + [

0 0 0 0
0 0 0 0
0 0 0 0
β𝑌∙𝑋 β𝑌∙𝑊 β𝑌∙𝑋𝑊 0

] [

𝑋
𝑊
𝑋𝑊
𝑌

] + [

𝜁𝑋
𝜁𝑊
𝜁𝑋𝑊
𝜁𝑌

] (1.4) 

where 𝑋 is the exogenous variable, 𝑊 is the moderator variable, 𝑋𝑊 is the interaction 

between 𝑋 and 𝑊, 𝑌 is the endogenous variable, α𝑋 is the intercept for the exogenous 

variable model, α𝑊 is the intercept for the moderator variable model,  

α𝑋𝑊 is the intercept for the moderation effect model, α𝑌 is the intercept for the endogenous 

variable model, β𝑌∙𝑋 is the direct effect of 𝑋 on 𝑌, β𝑌∙𝑊 is the direct effect of 𝑊 on 𝑌, β𝑌∙𝑋𝑊 is 

the direct effect of 𝑋𝑊 on 𝑌, and 𝜁𝑋 , 𝜁𝑊 , 𝜁𝑋𝑊 , 𝜁𝑌  are the error terms for the exogenous 

variable model, moderator variable model, moderated effect model, and endogenous 

variable model, respectively.  

In their seminal paper, Preacher et al. (2007) describe five basic moderated mediation 

models. Let 𝑋 be the exogenous variable, 𝑊 and 𝑍 be moderating variables, 𝑀 be the 

𝑋 𝑌 

β𝑌∙𝑋𝑊 

𝑊 

β𝑌∙𝑋 

β𝑌∙𝑀 
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mediating variable, and 𝑌 be the endogenous variable. Then, the five moderated mediation 

models described in Preacher et al. are as follows: 

1. 𝑋 moderates the direct effect of 𝑀 to 𝑌 

2. 𝑊 moderates the direct effect of 𝑋 to 𝑀 

3. 𝑊 moderates the direct effect of 𝑀 to 𝑌 

4. 𝑊 moderates the direct effect of 𝑋 to 𝑀 and 𝑍 moderates the direct effect of 𝑀 to 𝑌 

5. 𝑊 moderates both the direct effect of 𝑋 to 𝑀 and the direct effect of 𝑀 to 𝑌 

Figure (1.4) presents a graphical representation of these five models. A sixth moderated 

mediation model is described in Wang and Preacher (2015) based on combining Model 4 

and Model 5 from Figure (1.4); however, the conditional indirect effect under this model is 

hard to interpret. Therefore, we will not discuss their model further.  

1.3. Point Estimators for Unconditional and Conditional Indirect Effects 

 There are three methods for estimating unconditional indirect effects. The 

first method is the causal steps method. The causal steps method involves testing separate 

null hypotheses about the direct effects in a SEM. For example, to show that 𝑋 is indirectly 

related to 𝑌 via 𝑀, the Baron and Kenny (1986) method reparametrizes the model in (1.3) 

using the following three regression models, 

1. 𝑌 = α𝑌
′ + β𝑌∙𝑋

′ 𝑋 + ζ𝑌
′  

2. 𝑀 = α𝑀 + β𝑋∙𝑀𝑋 + ζ𝑀 

3. 𝑌 = α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑀𝑀 + ζ𝑌. 

(1.5) 

From these regression equations, four conditions must hold: (1) 𝑋 is significantly 

correlated with 𝑌 (β𝑌∙𝑋
′  in Model [1]), (2) 𝑋 is significantly correlated with 𝑀 (β𝑋∙𝑀 in 

Model [2]), (3) 𝑀 is significantly related to 𝑌 after controlling for 𝑋 (β𝑌∙𝑀 in Model [3]), and  
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Model 1 

 
Model 2 

 

 
Model 3 

 

 
Model 4 

 

 
Model 5 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1.4. Path diagrams representing models described in Preacher et al. (2007). 

Intercepts, errors, and covariances are omitted for clarity. 

 

(4) after controlling for 𝑀, the association between 𝑋 and 𝑌 should be zero (β𝑌∙𝑋 in Model 

[3]). If all four of these steps are met, then the data are consistent idea that 𝑀 completely 

mediates the relationship between 𝑋 and 𝑌. However, as is often the case in practice, the 

first three steps hold but in the fourth step β𝑌∙𝑋 ≠ 0; if β𝑌∙𝑋 is nonzero, but considered small 

𝑋 𝑌 

𝑀 

𝑋 𝑌 

𝑀 

𝑊 

𝑋 𝑌 

𝑀 

𝑊 

𝑋 𝑌 

𝑀 

𝑍 𝑊 

𝑋 𝑌 

𝑀 

𝑊 𝑊 
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and negligible in magnitude (small is relative to the data set), then partial mediation is said 

to occur (MacKinnon, 2008).   

In the difference of coefficients method, the indirect effect is conceptualized by the 

same series of three regression models given in (1.5), In Model 1, the total effect, denoted 

by β𝑌∙𝑋
′ , of 𝑋 on 𝑌 is calculated. In Model 2, the relationship between 𝑋 and 𝑀 is established. 

Lastly, in Model 3, the direct effect of 𝑋 on 𝑌 after controlling for 𝑀 is calculated, denoted 

by β𝑌∙𝑋. The point estimator of the indirect effect given by the difference of coefficients 

estimator is  

 𝑔(𝛃|𝛎) = β𝑌∙𝑋
′ − β𝑌∙𝑋 . (1.6) 

Using the notation in (1.6), 𝑔(𝛃|𝛎) denotes a function 𝑔(∙) of the direct effects 𝛃, 

conditional on the observed data 𝛎. The difference in coefficients method estimates the 

indirect effect as the difference between the total effect β𝑌∙𝑋
′  and the direct effect β𝑌∙𝑋.  

Lastly, the more common method for calculating indirect effects is the product of 

coefficients. The product of coefficients estimator for indirect effect based on the mediation 

model in (1.3) is simply 𝑔(𝛃|𝛎) = β𝑀∙𝑋β𝑌∙𝑀, or the product of direct effect of 𝑋 on 𝑀 and 

the direct effect of 𝑀 on 𝑌, controlling for 𝑋. Note, it can be shown that in the case of 

continuous variables, the difference of coefficients and product of coefficients estimators 

lead to the same point estimator for an indirect effect, that is,  

 β𝑌∙𝑋
′ − β𝑌∙𝑋 = β𝑀∙𝑋β𝑌∙𝑀 (1.7) 

Following the result in MacKinnon, Warsi, and Dwyer (1995), using the model specified in 

(1.5), the maximum likelihood estimate for β𝑌∙𝑋
′  is 

 
β𝑌∙𝑋
′ =

𝐶𝑜𝑣(𝑋, 𝑌)

𝑉𝑎𝑟(X)
. (1.8) 
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In the numerator, the covariance between 𝑋 and 𝑌 is given by 

 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑋, α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑀𝑀 + ϵ𝑌) 

= β𝑌∙𝑋𝐶𝑜𝑣(𝑋, 𝑋) + β𝑌∙𝑀𝐶𝑜𝑣(𝑋,𝑀) 

= β𝑌∙𝑋𝑉𝑎𝑟(X) + β𝑌∙𝑀𝐶𝑜𝑣(𝑋,𝑀). 

 

(1.9) 

 

Substituting the covariance (1.9) into (1.8),  

β𝑌∙𝑋
′ =

β𝑌∙𝑋𝑉𝑎𝑟(X) + β𝑌∙𝑀𝐶𝑜𝑣(𝑋,𝑀)

𝑉𝑎𝑟(X)
 

β𝑌∙𝑋
′ = β𝑌∙𝑋 + β𝑌∙𝑀

𝐶𝑜𝑣(𝑋,𝑀)

𝑉𝑎𝑟(X)
 

β𝑌∙𝑋
′ = β𝑌∙𝑋 + β𝑌∙𝑀β𝑀∙𝑋 

β𝑌∙𝑋
′ − β𝑌∙𝑋 = β𝑌∙𝑀β𝑀∙𝑋 , 

where β𝑀∙𝑋 =
𝐶𝑜𝑣(𝑋,𝑀)

𝑉𝑎𝑟(X)
 is the maximum likelihood estimate. However, when there are 

discrete endogenous variables in a model, the equality in (1.7) does not hold. Current 

research suggests that the product of coefficients estimator is the most flexible because it 

extends to more complicated models that include multiple mediators and categorical 

endogenous variables (Enders, Fairchild, & MacKinnon, 2013; MacKinnon, Lockwood, 

Brown, Wang, & Hoffman, 2007).  

Bollen (1989) describes a general method for determining the point estimator for 

an indirect effect of 𝛎 on 𝛎 based on any SEM. Based on the sum of powers of coefficient 

matrices, Bollen defines the total effects of 𝛎 on 𝛎, 𝐓𝛎𝛎, as 

 
𝐓𝛎𝛎 =∑𝛃𝑘

∞

𝑘=1

, (1.10) 

where 𝛃 is the matrix of direct effects specified in the general SEM in (1.1). 𝐓𝛎𝛎 is defined 

only if the infinite series in (1.10) converges to a matrix with finite elements or is stable 
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(Bentler & Freeman, 1983).  

 

Lemma 1.1. A square matrix 𝛃 is called convergent (Ben-Israel & Greville, 1974) if 

 lim
𝑘→∞

𝛃𝑘 = 𝟎. (1.11) 

Proof:  

Omitted; see Ben-Israel and Greville (1974). 

 

Theorem 1.1. A matrix 𝛃 is convergent if and only if the absolute value or modulus of the 

largest eigenvalue is less than one, that is 

 ρ(𝛃) < 1. (1.12) 

Proof: 

Let 𝛃 = 𝐔𝐃𝐔−1 be a full rank matrix with distinct roots, where D is a diagonal 

matrix of eigenvalues. Then, assuming 𝑘 > 1 

 𝛃𝑘 = (𝐔𝐃𝐔−1)𝑘 

= (𝐔𝐃𝐔−1)⋯ (𝐔𝐃𝐔−1)    (𝑘 times) 

= 𝐔𝐃𝑘𝐔−1. 

 

 

 

Under (1.12), ρ(𝛃) < 1 so that lim
𝑘→∞

𝐃𝑘 = 𝟎 and also lim
𝑘→∞

𝛃𝑘 = 𝟎. Conversely, (1.11) implies 

that lim
𝑘→∞

𝐃𝑘 = 𝟎, therefore requiring that ρ(𝐃) < 1 and hence (1.12). The result also holds 

more generally when 𝐃 = 𝐔−1𝛃𝐔 is in Jordan canonical form. ∎ 

 

  To determine to which value 𝐓𝛎𝛎 converges, we can add 𝐈 = 𝛃0 to (1.10) and then 

premultiply by 𝐈 − 𝛃 to get, 
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 (𝐈 − 𝛃)(𝐈 + 𝛃 + 𝛃2 +⋯+ 𝛃𝑘) = 𝐈 − 𝛃𝑘+1. (1.13) 

Since 𝛃 is assumed to be a convergent matrix (i.e., [1.11] holds), in the limit of (1.13), 

 lim
𝑘→∞

[(𝐈 − 𝛃)(𝐈 + 𝛃 + 𝛃2 +⋯+ 𝛃𝑘)] = lim
𝑘→∞

[𝐈 − 𝛃𝑘+1] 

(𝐈 − 𝛃) lim
𝑘→∞

[𝐈 + 𝛃 + 𝛃2 +⋯+ 𝛃𝑘] = 𝐈. 
(1.14) 

For the product on the left-hand side of (1.14) to equal I, the matrix sum (𝐈 + 𝛃 + 𝛃2 +⋯+

𝛃𝑘) must converge to (𝐈 − 𝛃)−1 as 𝑘 → ∞ (Bollen, 1987). Subtracting 𝐈 = 𝛃0 from this sum, 

in a convergent system, the total effects are defined as 

 
𝐓𝛎𝛎 = ∑𝛃𝑘

∞

𝑘=1

 

= (𝐈 − 𝛃)−1 − 𝐈. 

 

Given that the 𝛃 is a matrix of direct effects in a SEM, the indirect effects can be calculated 

as the difference between the total effects and direct effects as 

 𝑔(𝛃|𝛎) = (𝐈 − 𝛃)−1 − 𝐈 − 𝛃, (1.15) 

where 𝑔(𝛃|𝛎) denotes the indirect effects of 𝛎 on 𝛎 (Bollen, 1989).  

 To demonstrate the matrix algebra approach, consider the simple mediation model 

given in (1.3). First, we need to determine if (1.12) holds, that is, the matrix of direct 

effects, 𝛃, converges. This condition is easily established by using a basic theorem about 

lower triangular matrices. 

 

Theorem 1.2. If  𝛃 is an  𝑛 × 𝑛 lower triangular matrix, then its eigenvalues, 𝜆𝑖 , are the 

entries on the main diagonal, that is, 𝜆𝑖 = 𝛃𝑖𝑖, 𝑖 = 1,… , 𝑛. 

Proof: 

If 𝛃 is an 𝑛 × 𝑛 lower triangular matrix, where 𝑖 = 1,… , 𝑛 denotes the rows and 𝑗 =
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1, … , 𝑛 denotes the columns, then β𝑖𝑗 = 0 for all 𝑖 > 𝑗. The determinant of 𝛃 is given by  

 det(𝜷) = |𝛃 − λ𝐈| 

=∏(β𝑖𝑖 − λ)

𝑛

𝑖=1

. 
(1.16) 

Since the eigenvalues of 𝛃 are precisely the roots of its characteristic polynomial, the roots 

of the 𝑛𝑡ℎ degree polynomial in (1.16) are precisely the eigenvalues. Therefore, the 

eigenvalues of 𝛃 are β𝑖𝑖, 1 ≤ 𝑖 ≤ 𝑛.∎ 

 

Using Theorem (1.2), we can easily see that since the direct effects matrix 𝛃 given in (1.3) 

is lower triangular, all of its eigenvalues are on the main diagonal, which are zero in this 

case. Since all of the eigenvalues are zero, we can conclude from Theorem (1.2) that 𝛃 is a 

convergent matrix. Before continuing with the example, we can combine the results of 

Theorem (1.1) and Theorem (1.2) and establish a corollary about direct effect matrices.   

 

Corollary 1.1. Any direct effect matrix, 𝛃, written in lower triangular form with zeros along 

the main diagonal, is a convergent matrix.  

 

From Corollary (1.1), we can directly use Equation (1.15) to calculate the point estimators 

of indirect effects, if they exist. Continuing with the simple mediation model example, using 

the formula given in (1.15), the indirect effects of a simple mediation model are given by 

𝑔(𝛃|𝛎) = (𝐈 − 𝛃)−1 − 𝐈 − 𝛃 

= ([
1 0 0

−β𝑀∙𝑋 1 0
0 0 1

] − [
0 0 0
0 0 0
β𝑌∙𝑋 β𝑌∙𝑀 0

])

−1

− [
1 0 0
0 1 0
0 0 1

] − [

0 0 0
β𝑀∙𝑋 0 0
β𝑌∙𝑋 β𝑌∙𝑀 0

] 
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= [

0 0 0
β𝑀∙𝑋 0 0

β𝑌∙𝑋 + β𝑌∙𝑀β𝑀∙𝑋 β𝑌∙𝑀 0
] − [

0 0 0
β𝑀∙𝑋 0 0
β𝑌∙𝑋 β𝑌∙𝑀 0

] 

= [
0 0 0
0 0 0

β𝑌∙𝑀β𝑀∙𝑋 0 0
], 

where 𝑔(𝛃|𝛎) = β𝑌∙𝑀β𝑀∙𝑋 is the same point estimator of the indirect effect found earlier. 

The benefit of Bollen’s (1987) approach is that the method works for more complicated 

models and returns equations to calculate point estimators for each indirect effect in a 

model.  

Conveniently, similar matrix approach exists for deriving point estimators for 

conditional indirect effects. The approach given in Preacher et al. (2007) is based on 

computing the partial derivatives of the reduced-form equations of endogenous variables 

to obtain a compact effect matrix, denoted by 𝛃∗. Substituting the compact effect matrix 

into (1.15) yields the point estimator for conditional indirect effects, 

 𝑔(𝛃∗|𝛎) = (𝐈 − 𝛃∗)−1 − 𝐈 − 𝛃∗. (1.17) 

To demonstrate this approach, consider the Model 5 in Figure (1.4). This SEM can be 

expressed as, 

[
 
 
 
 
 
𝑋
𝑊
𝑋𝑊
𝑀𝑊
𝑀
𝑌 ]

 
 
 
 
 

=

[
 
 
 
 
 
α𝑋
α𝑊
α𝑋𝑊
α𝑀𝑊
α𝑀
α𝑌 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

β𝑀∙𝑋 β𝑀∙𝑊 β𝑀∙𝑋𝑊 0 0 0
β𝑌∙𝑋 β𝑌∙𝑊 β𝑌∙𝑋𝑊 β𝑌∙𝑀𝑊 β𝑌∙𝑀 0]

 
 
 
 
 

[
 
 
 
 
 
𝑋
𝑊
𝑋𝑊
𝑀𝑊
𝑀
𝑌 ]

 
 
 
 
 

+

[
 
 
 
 
 
𝜁𝑋
𝜁𝑊
𝜁𝑋𝑊
𝜁𝑀𝑊
𝜁𝑀
𝜁𝑌 ]

 
 
 
 
 

. 

To calculate the partial derivatives, it is convenient to write out the system of six equations 

1. 𝑋 = α𝑋 + 𝜁𝑋  

2. 𝑊 = α𝑊 + 𝜁𝑊 

3. 𝑋𝑊 = α𝑋𝑊 + 𝜁𝑋𝑊  
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4. 𝑀𝑊 = α𝑀𝑊 + 𝜁𝑀𝑊  

5. 𝑀 = α𝑀 + β𝑀∙𝑋𝑋 + β𝑀∙𝑊𝑊+ β𝑀∙𝑋𝑊𝑋𝑊 + 𝜁𝑀  

6. 𝑌 = α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑊𝑊 + β𝑌∙𝑋𝑊𝑋𝑊 + β𝑌∙𝑀𝑊𝑀𝑊 + β𝑌∙𝑀𝑀 + 𝜁𝑌, 

where 𝑋 is the exogenous variable, 𝑊 is the moderator variable, 𝑋𝑊 is the interaction 

between the exogenous and moderator variables, 𝑀 is the mediator variable, 𝑀𝑊 is the 

interaction between the mediator and moderator variable, 𝑌 is the endogenous variable, 

and α, β, and 𝜁 represent the intercepts, direct effects, and error terms, respectively for 

each model.  

To obtain the reduced-form equations of endogenous variables, one must first 

consider the conditional indirect effect(s) of interest. In most cases, interest lies in 

examining conditional indirect effects of exogenous variables to endogenous variables, 

rather than of moderator variables to endogenous variables. For the current example, the 

conditional indirect effect of interest is from the exogenous variable 𝑋 to the endogenous 

variable 𝑌. To calculate this effect, using the matrix of direct effects 𝛃 based on the 

moderated mediation model described above, first drop the rows and columns 

corresponding to moderator model (since we are not interested in any conditional indirect 

effect based on this variable) and interaction variable models. This step reduces 𝛃 from a 

6 × 6 matrix to a 3 × 3 matrix (i.e., since three variables are removed), which is our 𝛃∗. 

Next, the elements in 𝛃∗ represent the effect (i.e., regression coefficient) of a column on a 

row, or the partial derivative of a row variable with respect to a column variable. 

For the current example,  
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𝛃∗ =

 𝑋 𝑀 𝑌
𝑋 0 0 0
𝑀 𝜕𝑀/𝜕𝑋 0 0
𝑌 𝜕𝑌/𝜕𝑋 𝜕𝑌/𝜕𝑀 0

 ,  

where  

𝜕𝑀

𝜕𝑋
= β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊 

𝜕𝑌

𝜕𝑋
= β𝑌∙𝑋 + β𝑌∙𝑋𝑊𝑊 

𝜕𝑌

𝜕𝑀
= β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊. 

Lastly, using (1.17) we see that  

 
𝑔(𝛃∗|𝛎) = [

0 0 0
0 0 0

(β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊)(β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊) 0 0
] . (1.18) 

Here 𝑔(𝛃∗|𝛎) = (β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊)(β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊) is the point estimator of the conditional 

indirect effect of the exogenous variable 𝑋 to the endogenous variable 𝑌, via the mediator 

variable 𝑀, conditional upon the moderator variable 𝑊.  

 An alternative approach is to use the chain rule from calculus to calculate specific 

indirect effects. Using the chain rule, the conditional indirect effect given in (1.18) is 

obtained by  

 
𝑔(β|𝛎) =

∂𝑌

𝜕𝑋
 

=
∂𝑌

𝜕𝑀
 
∂𝑀

𝜕𝑋
 

= (β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊)(β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊). 
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1.4. Estimation of Structural Equation Models 

 Given that the point estimators for both unconditional and conditional indirect 

effects are functions of the direct effects 𝛃, it is necessary to determine how to estimate 

these parameters. The majority of distribution functions (e.g., normal, Bernoulli, Poisson) 

used in mediation and moderated mediation models are members of the exponential 

family. If an endogenous variable 𝑌 is a member of the exponential family, then its density 

function can be expressed in the form 

 
𝑓(𝑦|θ, ϕ) = exp {

𝑦θ − 𝑏(θ)

𝑎(ϕ)
+ 𝑐(𝑦, ϕ)}, (1.19) 

where θ and ϕ are parameters and 𝑎(∙), 𝑏(∙), and 𝑐(∙) are known function. As standard 

notation, we use 𝑌 to denote the random variable and 𝑦 to denote the realized value of 𝑌. 

Conveniently, for densities belonging to the exponential family a class of models known as 

generalized linear models (GLMs) can be used for parameter estimation. GLMs provide a 

unified modeling framework for handling continuous and discrete random variables that 

are members of the exponential family (McCullagh & Nelder, 1989). A GLM is characterized 

by three components, the random component, the systematic component, and the link 

component.  

1.4.1. GLM random component. The random component of a GLM specifies the 

probability distribution for an endogenous variable 𝑌. The log-likelihood function 

log𝑓(𝑦|θ, ϕ) = ℓ(θ, ϕ|𝑦), considered as a function of the parameters θ and ϕ with fixed 𝑦, 

of (1.19) is 

 
ℓ(θ, ϕ|𝑦) =

𝑦θ − 𝑏(θ)

𝑎(ϕ)
+ 𝑐(𝑦, ϕ), (1.20) 
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where log denotes the natural logarithm (Davis, 2002). An important function of a GLM 

that is used to estimate the mean and variance of 𝑌 is known as the score function, denoted 

𝑈. Mathematically, the score function (Cox & Hinkley, 1974) is defined as the partial 

derivative of the log-likelihood function with respect to the parameter θ, 

 
𝑈 = 𝑈(θ) =

𝜕

𝜕θ
𝑙(θ, ϕ|𝑦).  

The following Proposition gives important identities for the mean and variance of the score 

function of a GLM.  

 

Proposition 1.1: Assuming sufficient regularity conditions hold, the mean and variance of 

the score function, U, are given by 

 𝐸(𝑈) = 0 (1.21) 

and  

 𝑉𝑎𝑟(𝑈) = −𝐸(𝑈′), (1.22) 

where 𝑈′is the derivative of the score function. 

Proof:  

See Appendix A. 

 

Using the derived mean and variance of the score function, we can use the log-

likelihood given in (1.20) to calculate the score function  

 
𝑈 =

𝑦 − 𝑏′(θ)

𝑎(ϕ)
, (1.23) 

which can be rewritten in terms of 𝑦 as 
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 𝑦 = 𝑎(ϕ)𝑈 + 𝑏′(θ). (1.24) 

Taking expectations on both sides of (1.24), the expected value of 𝑌 is 

 𝐸(𝑌) = 𝑎(ϕ)𝐸(𝑈) + 𝑏′(θ) 

= 𝑏′(θ) 
(1.25) 

because 𝐸(𝑈) = 0. To calculate the variance of 𝑌, we first calculate the partial derivative of 

(1.23) with respect to θ as 

 
𝑈′ =

−𝑏′′(θ)

𝑎(ϕ)
, (1.26) 

where 𝑏′′(θ) is the second partial derivative of 𝑏(θ). Now, because 𝐸(𝑈2) = −𝐸(𝑈′),  

 
𝐸 [(

𝑌 − 𝑏′(θ)

𝑎(ϕ)
)

2

] =
𝑏′′(θ)

𝑎(ϕ)
. (1.27) 

From (1.27), we see that 𝑉𝑎𝑟(𝑈) = −𝐸(𝑈′) =
𝑏′′(θ)

𝑎(ϕ)
. Finally, to calculate the variance of 𝑌, 

using (1.24), 

Var(𝑌) = Var(𝑎(ϕ)𝑈 + 𝑏′(θ)) 

= (𝑎(ϕ))
2
Var(𝑈) 

= 𝑎(ϕ)𝑏′′(θ). 

Let 𝑉(θ) = 𝑏′′(θ) be the variance function of a GLM, then the variance of 𝑌 can be rewritten 

as 

 Var(𝑌) = 𝑎(ϕ)𝑉(θ). (1.28) 

In order to use the expressions for the mean (1.21) and variance (1.22) of 𝑌, a probability 

distribution from the exponential family should be written in exponential form given by 

Equation (1.19). For the purpose of the present study, the normal distribution will be used 
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to model continuous endogenous variables and the Bernoulli distribution will be used to 

model discrete binary endogenous variables.  

 If 𝑌 follows a normal distribution with mean μ ∈ ℛ and variance σ2 > 0, where ℛ 

denotes the set of real numbers, then the density function is given by 

 
𝑓(𝑦|μ, σ2) =

1

√2πσ2
𝑒
−

1
2σ2

(𝑦−μ)2
, (1.29) 

 with support 𝑦 ∈ ℛ. To show that the normal distribution is a member of the exponential 

family, we can rewrite (1.29) as 

   

𝑓(𝑦|μ, σ2) = exp

{
 
 

 
 
𝑦 μ⏞
θ

− μ2/2⏞
𝑏(θ)

σ2⏟
𝑎(ϕ)

−
1

2
[log(2πσ2) +

𝑦

σ2
]

⏟            
𝑐(𝑦,ϕ)

}
 
 

 
 

. (1.30) 

As labeled in (1.30), we see that θ = μ, ϕ = σ2, 𝑏(θ) =
θ2

2
, 𝑎(ϕ) = ϕ. As such, we can see 

that the mean of 𝑌 is 

 𝐸(𝑌) = 𝑏′(θ) 

= θ, 
 

so 𝐸(𝑌) = θ = μ. Similarly, for the variance of 𝑌, 

 𝑉𝑎𝑟(𝑌) = 𝑎(ϕ)𝑏′′(θ) 

= ϕ, 
 

so 𝑉𝑎𝑟(𝑌) = ϕ = σ2.  

If 𝑌 follows a Bernoulli distribution with parameter 𝑝 ∈ [0, 1], then the density 

function is given by 

 𝑓(𝑦| 𝑝) = 𝑝𝑦(1 − 𝑝)1−𝑦, (1.31) 
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where 𝑃(𝑌 = 1) = 𝑝 denotes the success probability. Similar to the normal distribution, to 

show that (1.31) is a member of the exponential family we can rewrite the density as 

 𝑓(𝑦|𝑝) = exp{𝑦log(𝑝) + (1 − 𝑦) log(1 − 𝑝)} 

= exp{𝑦log(𝑝) + log(1 − 𝑝) − 𝑦log(1 − 𝑝)} 

= exp {𝑦log (
𝑝

1 − 𝑝
) + log(1 − 𝑝)} 

(1.32) 

Looking at the first term, we see that θ = log (
𝑝

1−𝑝
) and although not as clear, the second 

term is 𝑏(θ) = log(1 − 𝑝). We can rewrite 𝑏(θ) to explicitly have log (
𝑝

1−𝑝
), or the log-odds, 

in its form as 

 
log(1 − 𝑝) = − log (

1

1 − 𝑝
) 

= − log (1 +
𝑝

1 − 𝑝
). 

(1.33) 

Substituting (1.33) into (1.32), we see that  

 

𝑓(𝑦|𝑝) = exp{𝑦 log (
𝑝

1 − 𝑝
)

⏟      
θ

− log (1 +
𝑝

1 − 𝑝
)

⏟          
𝑏(θ)

}. (1.34) 

As labeled in (1.34), θ = log (
𝑝

1−𝑝
), 𝑏(θ) = log (1 +

𝑝

1−𝑝
), and implicitly 𝑎(ϕ) = 1. By using 

properties of exponentials and natural logs, 𝑏(θ) = log(1 + 𝑒θ ). The mean of 𝑌 is given by 

 𝐸(𝑌) = 𝑏′(θ) 

=
𝑒θ

(1 + 𝑒θ )
. 

 

To simplify, we see that 

𝐸(𝑌) =
𝑒θ

(1 + 𝑒θ )
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=

𝑝
1 − 𝑝

1 +
𝑝

1 − 𝑝

 

= 𝑝. 

For the variance of 𝑌 using the quotient rule, 

 𝑉𝑎𝑟(𝑌) = 𝑎(ϕ)𝑏′′(θ) 

=
𝑒θ

(1 + 𝑒θ )2
. 

 

Simplifying, we see that 

𝑉𝑎𝑟(𝑌) =
𝑒θ

(1 + 𝑒θ )2
 

=

𝑝
1 − 𝑝

(1 +
𝑝

1 − 𝑝 )
2  

= (

𝑝
1 − 𝑝

1 +
𝑝

1 − 𝑝

)(
1

1 +
𝑝

1 − 𝑝

) 

= 𝑝(1 − 𝑝). 

Note, the Bernoulli distribution is equivalent to the Binomial distribution with parameters 

𝑛, which denotes the number of independent trials, and 𝑝, which is also the success 

probability, but with 𝑛 = 1. 

1.4.2. GLM systematic component. After selecting an appropriate distribution 

function for an endogenous variable 𝑌, a systematic component is specified that relates a 

covariate vector to 𝑌 using a linear predictor η𝑖  as 

 
η𝑖 = β0 +∑𝑥𝑖𝑘β𝑘

𝑝

𝑘=1

. (1.35) 
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Note, 𝑝 depends on the specified model and each endogenous variable can have its own 

linear predictor in a SEM. Equivalently, using matrix notation we can rewrite (1.35) as 

 η𝑖 = 𝐱𝑖
′𝛃,  

where 𝐱𝑖
′ = [1, 𝑥𝑖1, … , 𝑥𝑖𝑝] is a (𝑝 + 1)-dimensional vector of covariates for sample 𝑖 and 

𝛃 = [β0, … , β𝑝] is a (𝑝 + 1)-dimensional vector of unknown regression parameters. The 

increase in dimensions from 𝑝 to 𝑝 + 1 is a result of augmenting 𝐱 and 𝛃 to model the 

intercept term.  

 1.4.3. GLM link function. The last component of a GLM relates the linear predictor η𝑖  

to the expected value of the random component, or 𝐸(𝑌𝑖) = μ𝑖, where in this form, the 

mean is modeled directly. However, in nonlinear cases (e.g., discrete random variables) the 

link function is often modeled as a monotone, differentiable function 𝑔(∙) of μ, where  

  𝑔(μ𝑖) = η𝑖 .  

Each probability distribution in the exponential family has one special function of the mean 

called its natural parameter (Casella & Berger, 2001). For the normal distribution the 

natural parameter is the mean itself. For the Bernoulli distribution the natural parameter is 

the logit of the success probability. Link functions that use the natural parameter are called 

canonical link functions (Cox & Hinkley, 1974), so the canonical link function for the 

normal distribution is 

 𝑔(μ𝑖) = μ𝑖 ,  

and the canonical link for the Bernoulli distribution is 

 𝑔(μ𝑖) = logit(μ𝑖) 

= log (
μ𝑖

1 − μ𝑖
) . 
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Here μ𝑖 is equivalent to the probability of success for the 𝑖th sample value, that is 

𝑃(𝑌𝑖 = 1) = μ𝑖. The logit link function maps μ ∈ [0,1] to the real line and leads to 

regression parameters with odds-ratio interpretations (Madsen & Thyregod, 2011).  

The use of canonical link functions simplifies maximum likelihood estimation 

routines and leads to inferences for regression parameters based solely on sufficient 

statistics (Davis, 2002). Briefly, a sufficient statistic for a parameter θ captures all the 

information about θ contained in the sample (see Casella & Berger, 2001 p. 272 for a more 

formal definition of sufficient statistic). To show the role that canonical links and sufficient 

statistics play in GLMs, let 𝑌1, … , 𝑌𝑛 be independent random variables given by (1.19). The 

log-likelihood function for 𝑦1, … , 𝑦𝑛 is 

 
ℓ(θ𝑖, ϕ|𝑦𝑖) =∑

1

𝑎(ϕ)

𝑛

𝑖=1

𝑦𝑖θ𝑖 −∑
1

𝑎(ϕ)

𝑛

𝑖=1

𝑏(θ𝑖) +∑𝑐(𝑦𝑖, ϕ).

𝑛

𝑖=1

 (1.36) 

The use of a canonical link function implies that 

 θ𝑖 = η𝑖 = 𝑔(μ𝑖) = 𝐱𝑖
′𝛃,  

and since the canonical link function is a one-to-one function of μ𝑖, then the inverse relation 

𝑔−1(μ𝑖) = η𝑖  holds. The first term of the (1.36) becomes  

 
∑

1

𝑎(ϕ)

𝑛

𝑖=1

𝑦𝑖𝐱𝑖
′𝛃.  

Let 𝐗 = [𝟏, 𝐱1, … , 𝐱𝑝] denote the 𝑛 × (𝑝 + 1) matrix of covariates for all 𝑛 observations, and 

let 𝐲 = [𝑦1, … , 𝑦𝑛]
′ denote the 𝑛 × 1 vector of responses for all 𝑛 observations. Then the 

(𝑝 + 1) × 1 vector 𝐗′𝐲 with 𝑗th component ∑ 𝑥𝑖𝑗𝑦𝑖
𝑛
𝑖=1  is a sufficient statistic for 𝛃, and η = θ 

is called the canonical link function (McCullagh & Nelder, 1989).  
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1.4.4. Simplifying the joint SEM model. As mentioned earlier in this chapter, in SEMs 

that assume 𝐶𝑜𝑣(ζ𝑖, ζ𝑗) = 0 for 𝑖, 𝑗 = 1,2, … , 𝑝 where 𝑖 ≠ 𝑗, then estimating the joint 

regression model, 𝑓(𝛎|𝛉), is equivalent to estimating simpler, often univariate regression 

models. As such, when distributions belonging to the exponential family are used, these 

univariate regression models fit into the GLM framework. Before describing methods for 

estimating SEMs, it is first necessary to show that under certain conditions, the joint SEM 

can be estimated as a series of independent regression models. Consider an SEM model 

defined by𝑓(𝛎|𝛉), where 𝛎 is a vector of observed variables and 𝛉 is a vector of unknown 

parameters. Let 𝛎 denote dependent variables, 𝛈 denote covariates, and 𝛉 denote model 

parameters: 

𝛎𝑌: vector of dependent variables in the endogenous variable model  

𝛎𝑀: vector of dependent variables in the mediator variable model 

𝛎𝑋: vector of dependent variables in the exogenous variable model 

𝛈𝑌: vector of covariates in the endogenous variable model 

𝛈𝑀: vector of covariates in the mediator variable model 

𝛈𝑋: vector of covariates in the exogenous variable model 

𝛉𝑌: vector of parameters in the endogenous variable model 

𝛉𝑀: vector of parameters in the mediator variable model 

𝛉𝑋: vector of parameters in the exogenous variable model 

Using this new notation, if all error terms are assumed to be independent, we can 

reparametrize the joint SEM model as 

 
𝑓(𝛎|𝛉) = 𝑓(𝛎𝑌, 𝛎𝑀, 𝛎𝑋|𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) 
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= 𝑓(𝛎𝑌|𝛎𝑀, 𝛎𝑋 , 𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) 

                  × 𝑓(𝛎𝑀|𝛎𝑋, 𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) 

                  × 𝑓(𝛎𝑋|𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) 

= 𝑓(𝛎𝑌|𝛈𝑌, 𝛉𝑌)𝑓(𝛎𝑀|𝛈𝑀, 𝛉𝑀)𝑓(𝛎𝑋|𝛈𝑋, 𝛉𝑋). 

The term 𝑓(𝛎𝑌|𝛎𝑀, 𝛎𝑋 , 𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) simplifies to 𝑓(𝛎𝑌|𝛈𝑌, 𝛉𝑌) since 𝛎𝑀, 𝛎𝑋, 𝛈𝑀, 𝛈𝑋, 

𝛉𝑀, and 𝛉𝑋 are independent of the endogenous variable model. Likewise, the terms 

𝑓(𝛎𝑀|𝛎𝑋 , 𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) simplifies to 𝑓(𝛎𝑀|𝛈𝑀, 𝛉𝑀) and  𝑓(𝛎𝑋|𝛈𝑌, 𝛈𝑀, 𝛈𝑋 , 𝛉𝑌, 𝛉𝑀, 𝛉𝑋) 

simplifies to 𝑓(𝛎𝑋|𝛈𝑋, 𝛉𝑋) because of the independent regression model specification. 

Therefore, 𝑓(𝛎|𝛉) can be factored as  

 𝑓(𝛎|𝛉) = 𝑓(𝛎𝑌|𝛈𝑌, 𝛉𝑌)⏟        
Model of 𝑌 ∈ 𝛎𝑌

𝑓(𝛎𝑀|𝛈𝑀, 𝛉𝑀)⏟        
Model of 𝑀 ∈ 𝛎𝑀

𝑓(𝛎𝑋|𝛈𝑋 , 𝛉𝑋)⏟        
Model of 𝑋 ∈ 𝛎𝑋

. 
 

When 𝛎𝑖 is a scalar for 𝑖 = 𝑋,𝑀, or 𝑌, 𝑓(∙) is a univariate regression model, otherwise, 

𝑓(∙) is a multivariate regression model. Note, all models discussed previously in this 

chapter are univariate regression models for both the endogenous variable model and 

mediator variable model.  

1.4.5. Maximum likelihood estimation. A common method of estimation for 

SEMs is maximum likelihood (ML). As the name implies, ML estimators are based on the 

likelihood function. We will now give a more formal definition of the likelihood function. 

 

Definiton 1.1. Let  𝑌1, … , 𝑌𝑛 be independent random variables with a density functions 

𝑓(𝑦𝑖|𝛉) that depend on a vector-valued parameter  𝛉 ∈ 𝚯, where 𝚯 denotes the parameter 

space of  𝛉. The joint density function of n independent observations  𝐲 = [𝑦1, … , 𝑦𝑛]
′ is 
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𝑓(𝐲|𝛉) =∏𝑓(𝑦𝑖|𝛉

𝑛

𝑖=1

) 

= 𝐿(𝛉|𝐲). 

 

The expression, viewed as a function of the unknown parameters  𝛉 given the data 𝑌1 =

𝑦1, … , 𝑌𝑛 = 𝑦𝑛 are held fixed, is called the likelihood function.  

 

The method of ML estimates 𝛉 by finding a value 𝛉̂ that maximizes the likelihood, with the 

data held fixed (Aldrich, 1997). The maximum likelihood estimator (MLE) of 𝛉 is defined 

as, 

 {𝛉̂𝑀𝐿𝐸} ⊆ {argmax
𝛉∈𝚯

𝐿(𝛉|𝐲)}.  

Since finding MLEs involves calculating derivatives, it is often easier to work with the 

logarithm of the likelihood function, called the log-likelihood. The logarithm of the 

likelihood is a strictly monotonically increasing function, therefore, the MLE estimate is 

invariant whether we maximize the likelihood or log-likelihood (Lehmann & Casella, 1998).  

  A mathematical convenience of GLMs is that for all models, ML estimates of the 

parameter vector 𝛃 can be obtained using the same iteratively reweighted least squares 

(IRLS) algorithm (McCullagh & Nelder, 1989). The MLEs of the parameter vector 𝛃 are the 

solutions of the score equations 

 𝜕ℓ

𝜕β𝑗
= 0 (1.37) 

for 𝑗 = 0,… , 𝑝 where ℓ = ∑ ℓ𝑖(θ𝑖, ϕ|𝑦𝑖)
𝑛
𝑖=1 . Using the chain rule, the derivative in (1.37) can 

expressed as 
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 𝜕ℓ

𝜕β𝑗
=∑

𝜕ℓ𝑖
𝜕θ𝑖

𝜕θ𝑖
𝜕μ𝑖

𝜕μ𝑖
𝜕η𝑖

𝜕η𝑖
𝜕β𝑗

𝑛

𝑖=1

  (1.38) 

for 𝑗 = 0,… , 𝑝. For general link functions, (1.38) can be calculated by first considering each 

derivative term separately. For the first derivative, 

𝜕ℓ𝑖
𝜕θ𝑖

=
𝜕ℓ𝑖
𝜕θ𝑖

(
𝑦𝑖θ𝑖 − 𝑏(θ𝑖)

𝑎(ϕ)
+ 𝑐(𝑦𝑖, ϕ)) 

=
𝑦𝑖 − 𝑏′(θ𝑖)

𝑎(ϕ)
 

=
𝑦𝑖 − μ𝑖
𝑎(ϕ)

. 

The second derivative term can be obtained by recognizing that 
𝜕θ𝑖

𝜕μ𝑖
= (

𝜕μ𝑖

𝜕θ𝑖
)
−1

, 

 𝜕θ𝑖
𝜕μ𝑖

= (
𝜕μ𝑖
𝜕θ𝑖

)
−1

 

= (
𝜕𝑏′(θ𝑖)

𝜕θ𝑖
)

−1

 

=
1

𝑏′′(θ𝑖)
 

=
𝑎(ϕ)

𝑉𝑎𝑟(𝑌𝑖)
. 

 

The third derivative, 
𝜕μ𝑖

𝜕η𝑖
, we will keep as is for now until we consider canonical link 

functions. Lastly, the fourth derivative term can be expressed as  

 

 𝜕η𝑖
𝜕β𝑗

=
𝜕

𝜕β𝑗
∑𝑥𝑖𝑗β𝑗

𝑛

𝑖=1

 

= 𝑥𝑖𝑗 . 

 



www.manaraa.com

31 

 

Combining all the partial derivatives, we see that the maximum likelihood estimators of 𝛃 

are the solutions to 

 𝜕ℓ

𝜕β𝑗
=∑

𝑦𝑖 − μ𝑖
𝑎(ϕ)

𝑛

𝑖=1

𝑎(ϕ)

𝑉𝑎𝑟(𝑌𝑖)
 
𝜕μ𝑖
𝜕η𝑖

𝑥𝑖𝑗 = 0 

=∑
(𝑦𝑖 − μ𝑖)𝑥𝑖𝑗

𝑉𝑎𝑟(𝑌𝑖)

𝜕μ𝑖
𝜕η𝑖

𝑛

𝑖=1

= 0 

 

for 𝑗 = 0,… , 𝑝. 

 The IRLS algorithm used in the GLM framework requires the variance-covariance 

matrix of the score equations. Recall, the information is the variance of the score function 

and the univariate case was considered above. Now, however, because the maximum 

likelihood estimators are based on solving a system of 𝑝 + 1 score equations, we must 

consider the variance-covariance matrix of this set of score equations. Specifically, the 

variance-covariance matrix of a set of 𝑝 + 1 score equations is referred to as the 

information matrix, denoted by 𝐈(∙). Let 𝐔 =
𝜕ℓ

𝜕𝛃
 be the   (𝑝 + 1) × 1 gradient vector defined 

as 

 
𝐔 =

𝜕ℓ

𝜕𝛃
 

=

[
 
 
 
 
𝜕ℓ

𝜕β0
⋮
𝜕ℓ

𝜕β𝑝]
 
 
 
 

, 

 

then the information 𝐈(𝛃) is given by 

 𝐈(𝛃) = 𝐸 [(𝐔 − 𝐸(𝐔))(𝐔 − 𝐸(𝐔))
′
] = 𝐸[𝐔𝐔′],  

since 𝐸(𝐔) = 𝟎 (Lehmann, 1999) with (𝑗, 𝑘)th element (Davis, 2002) 
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𝐈𝑗𝑘(𝛃) = 𝐸 (
𝜕ℓ

𝜕β𝑗

𝜕ℓ

𝜕β𝑘
) 

= 𝐸 (∑
(𝑦𝑖 − μ𝑖)𝑥𝑖𝑗

𝑉𝑎𝑟(𝑌𝑖)

𝜕μ𝑖
𝜕η𝑖

𝑛

𝑖=1

∑
(𝑦𝑖 − μ𝑖)𝑥𝑖𝑘
𝑉𝑎𝑟(𝑌𝑖)

𝜕μ𝑖
𝜕η𝑖

𝑛

𝑖=1

) 

= 𝐸 (∑
(𝑦𝑖 − μ𝑖)

2𝑥𝑖𝑗𝑥𝑖𝑘

𝑉𝑎𝑟(𝑌𝑖)2
(
𝜕μ𝑖
𝜕η𝑖

)
2𝑛

𝑖=1

) 

=∑
𝑥𝑖𝑗𝑥𝑖𝑘

𝑉𝑎𝑟(𝑌𝑖)
(
𝜕μ𝑖
𝜕η𝑖

)
2𝑛

𝑖=1

. 

Technically, 𝐈(𝛃) is the expected information. By properties of the score function under 

regularity conditions, 𝐈𝑗𝑘(𝛃) is equivalently 

 
𝐸 (

𝜕2ℓ

𝜕β𝑗𝜕β𝑘
) = −∑

𝑥𝑖𝑗𝑥𝑖𝑘

𝑉𝑎𝑟(𝑌𝑖)
(
𝜕μ𝑖
𝜕η𝑖

)
2

.

𝑛

𝑖=1

  

Using the IRLS algorithm, the 𝑘th approximation to 𝛃 can be estimated by an iterative 

method known as the Fisher Scoring Algorithm, 

 𝐛(𝑘) = 𝐛(𝑘−1) + [𝐈(𝛃)(𝑘−1)]
−1
𝐔(𝑘−1), (1.39) 

where 𝐛(𝑘−1) is the estimate of 𝛃 at the (𝑘 − 1)th iteration, 𝐔(𝑘−1) is the gradient vector of 

the log-likelihood evaluated at 𝐛(𝑘−1), and 𝐈(𝛃)(𝑘−1) is the information matrix evaluated at 

𝐛(𝑘−1).  

The logic behind the iterative scheme in (1.39) is based on a Taylor expansion of the 

score function. In particular, suppose we have a vector of starting values 𝛃0, then a first-

order Taylor expansion of 𝐔(𝛃) about 𝛃0 is  

 𝐔(𝛃) = 𝐔(𝛃0) + 𝓘(𝛃0)(𝛃 − 𝛃0), (1.40) 

where  
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𝓘(𝛃0) = −

𝜕ℓ

𝜕𝛃0𝛃0
′   

is the observed information at 𝛃0. Let 𝛃̂ be the MLE of 𝛃, then substituting 𝛃 = 𝛃̂ into (1.40) 

and observing that 𝐔(𝛃̂) = 𝟎 gives 

 𝓘(𝛃0)(𝛃̂ − 𝛃0) = 𝐔(𝛃0) 

𝛃̂ = 𝛃0 + 𝓘(𝛃0)
−1𝐔(𝛃0). 

 

By replacing 𝓘(𝛃0)
−1 with its expectation, we get the iterative routine in (1.40).  

Going back to (1.39), we can premultiply both sides by 𝐈(𝛃)(𝑚−1) to get 

 𝐈(𝛃)(𝑘−1)𝐛(𝑘) = 𝐈(𝛃)(𝑘−1)𝐛(𝑘−1) + 𝐔(𝑘−1). (1.41) 

Let 𝐖 be an 𝑛 × 𝑛 diagonal matrix with elements 

 
𝑤𝑖𝑖 =

1

𝑉𝑎𝑟(𝑌𝑖)
(
𝜕μ𝑖
𝜕η𝑖

)
2

,  

then 𝐈(𝛃) = 𝐗′𝐖𝐗 and the iterative scheme in (1.41) becomes 

 𝐗′𝐖𝐗𝐛(𝑘) = 𝐗′𝐖𝐗𝐛(𝑘−1) + 𝐔(𝑘−1).  

The 𝑗th row of the (𝑝 + 1)  ×  𝑛 matrix 𝐗′𝐖 is  

 
[𝑥1𝑗𝑤11, … , 𝑥𝑛𝑗𝑤𝑛𝑛] = [

𝑥1𝑗

𝑉𝑎𝑟(𝑌1)
(
𝜕μ1
𝜕η1

)
2

, … ,
𝑥𝑛𝑗

𝑉𝑎𝑟(𝑌𝑛)
(
𝜕μ𝑛
𝜕η𝑛

)
2

]  

and the 𝑗th component of 𝐔 is 

 
𝑈𝑗 =∑

(𝑦𝑖 − μ𝑖)𝑥𝑖𝑗

𝑉𝑎𝑟(𝑌𝑖)

𝜕μ𝑖
𝜕η𝑖

.

𝑛

𝑖=1

  

Define a new 𝑛 × 1 vector, denoted by 𝐳, of ‘adjusted’ endogenous variables as 
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𝐳 =

[
 
 
 
 η̂1 + (𝑦1 − μ̂1)

𝜕η1
𝜕μ1

⋮

η̂𝑛 + (𝑦𝑛 − μ̂𝑛)
𝜕η𝑛
𝜕μ𝑛]

 
 
 
 

,  

where η̂𝑖  is the linear predictor in (1.35) and η̂𝑖, μ̂𝑖 and 
𝜕μ𝑖

𝜕η𝑖
 are all evaluated at the 𝐛(𝑘−1). 

The final iterative scheme becomes 

 𝐗′𝐖𝐗𝐛(𝑘) = 𝐗′𝐖𝐳  

and assuming that 𝐗′𝐖𝐗 has rank 𝑝 + 1, 

 𝐛(𝑘) = (𝐗′𝐖𝐗)−1𝐗′𝐖𝐳.  

When the canonical link function is used, η𝑖 = θ𝑖 = 𝐱′𝛃, then 

𝜕μ𝑖
𝜕η𝑖

=
𝜕μ𝑖
𝜕θ𝑖

 

=
𝜕b′(θ𝑖)

𝜕θ𝑖
 

= b′′(θ𝑖) 

=
𝑉𝑎𝑟(𝑌𝑖)

𝑎(ϕ)
. 

Therefore, the MLEs are the solutions to the simplified system of score equations 

𝜕ℓ

𝜕β𝑗
=∑

𝑦𝑖 − μ𝑖
𝑎(ϕ)

𝑎(ϕ)

𝑉𝑎𝑟(𝑌𝑖)

𝑉𝑎𝑟(𝑌𝑖)

𝑎(ϕ)

𝑛

𝑖=1

𝑥𝑖𝑗 = 0 

=∑
𝑦𝑖 − μ𝑖
𝑎(ϕ)

𝑛

𝑖=1

𝑥𝑖𝑗 = 0. 

Since the (𝑗, 𝑘)th component of the observed information matrix is 

 𝜕2ℓ

𝜕β𝑗𝜕β𝑘
= −∑

𝑥𝑖𝑗

𝑎(ϕ)

𝑛

𝑖=1

(
𝜕μ𝑖
𝜕β𝑘

), (1.42) 
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this implies that 
𝜕2ℓ

𝜕β𝑗𝜕β𝑘
= 𝐸 (

𝜕2ℓ

𝜕β𝑗𝜕β𝑘
) because (1.42) does not depend on {𝑌𝑖}. The 

asymptotic variances of the MLEs are obtained as the negative inverse of the expected 

information matrix 𝐈(𝛃)−1 (Lehmann & Casella, 1998).  

 We can use the ML routines described above to estimate the model parameters for 

the mediation and endogenous variable models. Specifically, for a random sample of 𝑛 

observations, the likelihood of 𝑓(𝛎|𝛉) is  

 
𝐿(𝛉|𝛎) =∏𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)𝑓(𝛎𝑀𝑖

|𝛈𝑀𝑖
, 𝛉𝑀)𝑓(𝛎𝑋𝑖|𝛈𝑋𝑖 , 𝛉𝑋)

𝑛

𝑖=1

  

 and the log-likelihood is 

ℓ(𝛉|𝛎) =∑log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑋𝑖|𝛈𝑋𝑖 , 𝛉𝑋)

𝑛

𝑖=1

. 

Here, 𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌) and 𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀) can be parametrized using a distribution belonging 

to the exponential family (e.g., normal, Bernoulli) since the models are univariate. Although 

the parameters of 𝑓(𝛎𝑋𝑖|𝛈𝑋𝑖 , 𝛉𝑋) may be of interest in some applications, they are 

irrelevant for calculating indirect effects and be safely ignored. Therefore, we can consider 

the log-likelihood in as proportional to  

 
ℓ(𝛉|𝛎) ∝∑log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀)

𝑛

𝑖=1

.  

To calculate the regression parameters for each model, we consider the partial derivatives 

𝜕

𝜕𝛉𝑌
ℓ(𝛉|𝛎) and 

𝜕

𝜕𝛉𝑀
ℓ(𝛉|𝛎), 

𝜕

𝜕𝛉𝑌
ℓ(𝛉|𝛎) =

𝜕

𝜕𝛉𝑌
[∑log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀)

𝑛

𝑖=1

] 
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=∑
𝜕

𝜕𝛉𝑌
log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

 

and  

𝜕

𝜕𝛉𝑀
ℓ(𝛉|𝛎) =

𝜕

𝜕𝛉𝑀
[∑log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀)

𝑛

𝑖=1

] 

=∑
𝜕

𝜕𝛉𝑀
log𝑓(𝛎𝑀𝑖

|𝛈𝑀𝑖
, 𝛉𝑀)

𝑛

𝑖=1

. 

These calculations reinforce the notion that assuming independent error terms, the 

regression parameters for the mediator and endogenous variable models can be estimated 

separately.  

1.5. Confidence Interval Estimation for Indirect-Type Effects 

 1.5.1. Multivariate delta method. Confidence intervals are the most widely used 

method to test the significance of an indirect effect, that is testing the null hypothesis 

    𝐻0: 𝑔(𝛃|𝛎) = 0.  

A popular approximation method for obtaining confidence intervals for indirect effects in 

SEMs is based on the (first-order and second-order) multivariate delta method. The 

multivariate delta method is a general technique for deriving the asymptotic distribution of 

a differentiable vector function of a multivariate normally distributed vector (Sobel, 1986).  

 

Theorem 1.3. Let 𝑔be a function that is differentiable in a neighborhood of a 𝑘-dimensional 

vector  𝛉. Let  𝛉̂𝑛 be a sequence of random vectors that satisfies  

    
√𝑛(𝛉̂𝑛 − 𝛉)

𝒟
→𝑁(𝟎, 𝚺(𝛉)),  

where 
𝒟
→ denotes convergence in distribution, then 
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√𝑛 (𝑔(𝛉̂𝑛) − 𝑔(𝛉))

𝒟
→𝑁(𝟎, (

𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
)),  

provided that the quadratic form (
𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
) does not vanish, where   

    
(
𝜕𝑔

𝜕𝛉
)
′

= [
𝜕𝑔

𝜕θ1
, … ,

𝜕𝑔

𝜕θ𝑘
]  

is the gradient vector of g.  

Proof:   

A formal proof necessitates introducing technical convergence concepts of 

multivariate normal random variables, therefore, only a general outline of the proof will be 

discussed. For a detailed proof, see Lehman and Casella (1998). Suppose 𝑔 has a first-order 

Taylor series expansion of 𝛉̂𝑛 around 𝛉 given by 

 
𝑔(𝛉̂𝑛) ≅ 𝑔(𝛉) + (𝛉̂𝑛 − 𝛉)

′ 𝜕𝑔

𝜕𝛉
 

𝑔(𝛉̂𝑛) − 𝑔(𝛉) ≅ (𝛉̂𝑛 − 𝛉)
′ 𝜕𝑔

𝜕𝛉
 

(1.42) 

The form given in (1.42) is a linear combination of a multivariate normal random vector. 

An important property of the multivariate normal distribution is that the distribution of a 

linear combination of a multivariate normal random vector also has a multivariate normal 

distribution (Johnson & Wichern, 2002; Rao, 1976). Therefore, the distribution of 𝑔(𝛉̂𝑛) is 

multivariate normal with mean  

𝐸[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] = 𝐸 [(𝛉̂𝑛 − 𝛉)
′ 𝜕𝑔

𝜕𝛉
] 

= 𝟎 

since 𝑔(𝛉) is constant and 𝐸(𝛉̂𝑛 − 𝛉) = 𝟎 and variance-covariance matrix 
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𝑉𝑎𝑟[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] = 𝑉𝑎𝑟 [(𝛉̂𝑛 − 𝛉)
′ 𝜕𝑔

𝜕𝛉
] 

= [(
𝜕𝑔

𝜕𝛉
)
′

𝑉𝑎𝑟(𝛉̂𝑛 − 𝛉)
′
(
𝜕𝑔

𝜕𝛉
)] 

= 𝑛−1 [(
𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
)], 

where 𝑉𝑎𝑟(𝛉̂𝑛 − 𝛉)
′
= 𝑛−1𝚺(𝛉). Therefore, the distribution of 𝑔(𝛉̂𝑛) − 𝑔(𝛉) is 

asymptotically normal with mean given by the zero mean vector and variance-covariance 

matrix given by the quadratic form 𝑛−1 [(
𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
)]. ∎ 

 

A formal theorem for the second-order multivariate delta method will not be given, 

however, we will consider its variance approximation. Although the second-order delta 

method is direct extension of the first-order method, it requires introducing properties 

about the trace of a matrix and the distribution of quadratic forms involving multivariate 

normal random vectors.  

 

Lemma 1.1. The trace of an 𝑛 × 𝑛 square matrix A, denote by tr(𝐀), is the sum of elements 

along the main diagonal of A,  

 
tr(𝐀) =∑𝑎𝑖𝑖

𝑛

𝑖=1

.  

Assuming all matrices conform to addition and multiplication operations, the trace 

operator is characterized by the following properties: 

i. tr(𝐀 + 𝐁) = tr(𝐀) + tr(𝐁) 

ii. tr(𝑐𝐀) = 𝑐tr(𝐀) 
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iii. tr(𝐀𝐁𝐂) = tr(𝐁𝐂𝐀) = tr(𝐂𝐀𝐁) 

where 𝑐 is a constant.  

Proof: 

 Omitted; see Searle (1982) and Harville (1997). 

 

Using the properties stated in Lemma 1.1, we can state an important theorem about 

quadratic forms involving normal random vectors.  

 

Theorem 1.4. Let 𝛜 be a random multivariate normally distributed vector with mean 𝛍 and 

covariance matrix 𝚺. Then for symmetric, positive definite matrix 𝐀, the mean of the 

quadratic form 𝛜′𝐀𝛜 is 

 𝐸(𝛜′𝐀𝛜) = 𝛍′𝐀𝛍 + tr(𝐀𝚺) (1.43) 

and variance is 

 𝑉𝑎𝑟(𝛜′𝐀𝛜) = 2tr[(𝐀𝚺)2] + 4𝛍′𝐀𝚺𝐀𝛍. (1.44) 

Proof:  

 The mean of the quadratic form 𝛜′𝐀𝛜 can be derived by using properties of the trace 

operator in Lemma (1.1) and of moments of multivariate normal random vectors, 

𝐸(𝛜′𝐀𝛜) = 𝐸[tr(𝛜′𝐀𝛜)] 

= tr[𝐀𝐸(𝛜𝛜′)] 

= tr[𝐀(Cov(𝛜) + 𝛍𝛍′)] 

= tr(𝐀𝚺) + 𝛍′𝐀𝛍. 
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Here, 𝐸(𝛜𝛜′) = (Cov(𝛜) + 𝛍𝛍′) because Cov(𝛜) = 𝐸(𝛜𝛜′) − 𝛍𝛍′. Using the result of the mean 

of the quadratic form, we can start with the definition of a variance to derive the variance 

of 𝛜′𝐀𝛜, 

 𝑉𝑎𝑟(𝛜′𝐀𝛜) = 𝑬 [(𝛜′𝐀𝛜 − 𝐄(𝛜′𝐀𝛜))(𝛜′𝐀𝛜 − 𝐄(𝛜′𝐀𝛜))
′
] 

= 𝑬[(𝛜′𝐀𝛜 − 𝐄(𝛜′𝐀𝛜))(𝛜′𝐀𝛜 − 𝐄(𝛜′𝐀𝛜))] 

= 𝑬 [
𝛜′𝐀𝛜𝛜′𝐀𝛜 − 𝛜′𝐀𝛜𝐄(𝛜′𝐀𝛜) − 𝛜′𝐀𝛜𝐄(𝛜′𝐀𝛜)

+(𝐄(𝛜′𝐀𝛜))
𝟐 ] 

= 𝑬(𝛜′𝐀𝛜𝛜′𝐀𝛜) − 𝑬(𝛜′𝐀𝛜)𝑬(𝛜′𝐀𝛜)

− 𝑬(𝛜′𝐀𝛜)𝑬(𝛜′𝐀𝛜) + (𝐄(𝛜′𝐀𝛜))
𝟐

 

= 𝑬(𝛜′𝐀𝛜𝛜′𝐀𝛜) − (𝐸(𝛜′𝐀𝛜))
𝟐

 

= 𝑬(𝛜′𝐀𝛜𝛜′𝐀𝛜) − (𝛍′𝐀𝛍 + tr(𝐀𝚺))
𝟐

 

(1.45) 

Now, the first term on the right hand-side of (1.45) is the expectation of the product of two 

Gaussian quadratic forms, or a quartic form. Using (8.2.4) from (Petersen & Pedersen, 

2012),  

 𝑬(𝛜′𝐀𝛜𝛜′𝐀𝛜) = 2tr[𝐀𝚺𝐀𝚺] + 4𝛍′𝐀𝚺𝐀𝛍 

+(𝛍′𝐀𝛍 + tr(𝐀𝚺))
2
. 

(1.46) 

Substituting (1.46) into (1.45), 

𝑉𝑎𝑟(𝛜′𝐀𝛜) = 2tr[𝐀𝚺𝐀𝚺] + 4𝛍′𝐀𝚺𝐀𝛍 + (tr(𝐀𝚺) + 𝛍′𝐀𝛍)2 − (𝛍′𝐀𝛍 + tr(𝐀𝚺))
2
 

= 2tr[𝐀𝚺𝐀𝚺] + 4𝛍′𝐀𝚺𝐀𝛍 

= 2tr[(𝐀𝚺)2] + 4𝛍′𝐀𝚺𝐀𝛍 

which completes the proof. ∎ 
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Based on results in Lemma (1.1) and Theorem (1.4), we can extend the first-order 

multivariate delta method to a second-order approximation. Often, the second-order 

multivariate delta method is used as an alternative approximation to the first-order 

because in some cases, (
𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
) goes to zero due to a vanishing gradient problem 

(Sobel, 1982) in the variance approximation. However, for purposes here we will assume 

that (
𝜕𝑔

𝜕𝛉
)
′

𝚺(𝛉) (
𝜕𝑔

𝜕𝛉
) exists and is non-null.  

 The second-order multivariate delta method uses a second-order Taylor expansion 

of 𝑔(𝛉̂𝑛) around 𝛉 as 

𝑔(𝛉̂𝑛) ≈ 𝑔(𝛉) + (
𝜕𝑔

𝜕𝛉
)
′

(𝛉̂𝑛 − 𝛉) +
1

2
(𝛉̂𝑛 − 𝛉)

′ 𝜕2𝑔

𝜕𝛉𝛉′
(𝛉̂𝑛 − 𝛉), (1.47) 

where 
𝜕2𝑔

𝜕𝛉𝛉′
 is the matrix of second partial derivatives of 𝑔, or more commonly referred to as 

the Hessian of 𝑔. To simplify notation, let 𝐝 =
𝜕𝑔

𝜕𝛉
 denote the gradient vector of 𝑔 and 𝐇 =

𝜕2𝑔

𝜕𝛉𝛉′
 denote the Hessian matrix of 𝑔, then (1.47) can be expressed as   

𝑔(𝛉̂𝑛) ≈ 𝑔(𝛉) + 𝐝′(𝛉̂𝑛 − 𝛉) +
1

2
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉) 

𝑔(𝛉̂𝑛) − 𝑔(𝛉) ≈ 𝐝′(𝛉̂𝑛 − 𝛉) +
1

2
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉). 

(1.48) 

The variance of 𝑔(𝛉̂𝑛) − 𝑔(𝛉) can be calculated using the general variance formula  

𝑉𝑎𝑟[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] = 𝐸 [(𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

] − 𝐸[𝑔(𝛉̂𝑛) − 𝑔(𝛉)]
2
. 

The term 𝐸 [(𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

] can be calculated by first expanding the square of (1.48) as, 

(𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

≈ (𝐝′(𝛉̂𝑛 − 𝛉) +
1

2
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉))

2
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=

(

 
 
 
𝐝′(𝛉̂𝑛 − 𝛉)𝐝′(𝛉̂𝑛 − 𝛉) +

1

2
𝐝′(𝛉̂𝑛 − 𝛉)(𝛉̂𝒏 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)

+
1

2
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)𝐝′(𝛉̂𝑛 − 𝛉)

+
1

4
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉) )

 
 
 

 

= (
𝐝′(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐝 + 𝐝′(𝛉̂𝑛 − 𝛉)(𝛉̂𝒏 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)

+
1

4
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)

). 

Taking the expected value of (𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

,  

𝐸 [(𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

] ≈ 𝐸 [
𝐝′(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐝 + 𝐝′(𝛉̂𝑛 − 𝛉)(𝛉̂𝒏 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)

+
1

4
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)

] 

= 𝐝′𝚺̂(𝛉̂)𝐝 +
1

4
𝐸 [(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)]. 

The term 
1

4
𝐸 [(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)] is the expected value of a quartic 

form of Gaussians. Let 𝐐 = (𝛉̂𝑛 − 𝛉)
′
𝐇(𝛉̂𝑛 − 𝛉), then this expected value can be derived by 

rearranging the variance formula as 

 𝐸(𝐐𝐐′) = 𝑉𝑎𝑟(𝐐) + 𝐸(𝐐)𝐸(𝐐′).  

Using the results from Theorem (1.4), we can see that 𝐸(𝐐𝐐′) is 

𝐸(𝐐𝐐′) = 2tr [(𝐇𝚺̂(𝛉̂))
2

] + 4𝛍′𝐇𝚺̂(𝛉̂)𝐇𝛍 

+ (𝛍′𝐇𝛍 + tr (𝐇𝚺̂(𝛉̂))) (𝛍′𝐇𝛍 + tr (𝐇𝚺̂(𝛉̂))). 

(1.49) 

We know from Theorem (1.3) that the asymptotic distribution of 𝛉̂𝑛 − 𝛉 is normal with 

zero mean vector, or 𝛍 = 𝟎 so (1.49) simplifies to 

𝐸(𝐐𝐐′) = 2tr [(𝐇𝚺̂(𝛉̂))
2

] + (tr (𝐇𝚺̂(𝛉̂))) (tr (𝐇𝚺̂(𝛉̂))) 
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= 2tr [(𝐇𝚺̂(𝛉̂))

2

] + (tr (𝐇𝚺̂(𝛉̂)))
2

. (1.50) 

Following identities given in Petersen and Pedersen (2012), the expected value of the 

quartic form in (1.50) becomes 

 1

4
𝐸(𝐐𝐐′) =

1

4
(2tr [(𝐇𝚺̂(𝛉̂))

2

] + (tr (𝐇𝚺̂(𝛉̂)))
2

) 

=
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

] +
1

4
(tr (𝐇𝚺̂(𝛉̂)))

2

. 

 

(1.51) 

Therefore,  

𝐸 [(𝑔(𝛉̂𝑛) − 𝑔(𝛉))
2

] = 𝐝′𝚺̂(𝛉̂)𝐝 +
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

] +
1

4
(tr[𝐇𝚺̂(𝛉̂)])

2
. 

Next, 𝐸[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] is 

 
𝐸[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] ≈ 𝐸 [𝐝′(𝛉̂𝑛 − 𝛉) +

1

2
(𝛉̂𝑛 − 𝛉)

′
𝐇(𝛉̂𝑛 − 𝛉)] 

=
1

2
tr[𝐇𝚺̂(𝛉̂)] 

 

 

which implies that  

 
𝐸[𝑔(𝛉̂𝑛) − 𝑔(𝛉)]

2
=
1

4
(tr[𝐇𝚺̂(𝛉̂)])

2
. (1.52) 

Combining (1.51) and (1.52), the variance of 𝑔(𝛉̂𝑛) − 𝑔(𝛉) is 

= 𝐝′𝚺̂(𝛉̂)𝐝 +
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

] +
1

4
(tr[𝐇𝚺̂(𝛉̂)])

2
−
1

4
(tr[𝐇𝚺̂(𝛉̂)])

2
 

= 𝐝′𝚺̂(𝛉̂)𝐝 +
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

], 

which matches the result in Preacher et al. (2007). The second-order multivariate delta 

method is similar to the first-order approximation, except that a second term is added to 

the first-order variance  
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𝑉𝑎𝑟[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] = 𝐝′𝚺̂(𝛉̂)𝐝⏟    

first−order

+
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

]
⏟          

second−order

. (1.53) 

Having derived the necessary variances, 100(1 − 𝛼)% confidence intervals for 

indirect effects using the second-order delta method are of the form 

 𝑔(𝛃|𝛎) ± 𝑧𝛼/2𝑉𝑎𝑟[𝑔(𝛃|𝛎)]
1/2, (1.54) 

where 𝑧𝛼/2 is the 𝛼/2 quantile of the standard normal distribution and 𝑉𝑎𝑟[𝑔(𝛃|𝛎)]1/2 is 

the standard error. The confidence interval in (1.54) is estimated by 

 𝑔(𝛃̂|𝛎) ± 𝑧𝛼/2𝑉𝑎𝑟[𝑔(𝛃̂|𝛎)]
1/2

, (1.55) 

where 𝑔(𝛃̂|𝛎) is the estimated indirect effect and 𝑉𝑎𝑟[𝑔(𝛃̂|𝛎)]
1/2

 is the estimated standard 

error using the first- or second-order multivariate delta method. Confidence intervals for 

two of the models discussed earlier in this Chapter (Figure [1.4]) are presented in 

Appendix B. 

From a mathematical point of view, a quadratic approximation to a nonlinear 

function results in better accuracy than a linear approximation. Current research, however, 

has been inconclusive in determining which approximation method results in better 

statistical performance for indirect effect testing. For simple mediation models, MacKinnon 

(1992) found that standard errors for the second-order approximation of standard errors 

were less biased than first-order standard errors; however, Mackinnon et al. (1995) found 

the opposite. Preacher et al. (2007) found that in general, for the five moderated mediation 

models presented in Figure (1.4), the second-order delta method led to equal or slightly 

lower rejection rates compared to the first-order delta method. Given the mixed results, in 

practice, researchers use both the first-order and the second-order multivariate delta 

method to construct confidence intervals for indirect effects. However, the second-order 
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variance term is often negligible (MacKinnon et al., 2002; Preacher & Hayes, 2004) and 

thus can be safely ignored, which is why the default in popular SEM software packages such 

as Mplus and Lavaan in R use the first-order approximation.  

 1.5.2. Nonparametric bootstrap. The bootstrap is the most popular method of 

hypothesis testing for indirect effects (Cheung, 2007; MacKinnon et al., 1995; MacKinnon et 

al., 2004; MacKinnon, Lockwood, Hoffman, West, & Virgil, 2002; Preacher et al., 2007; 

Preacher & Hayes, 2008). Figure (1.5) presents a schematic diagram of the bootstrap 

applied to mediation-type data structures. On the left-hand side of Figure (1.5) is the real 

world. In the real world an unknown probability mechanism 𝑃 yields an observed data set 

𝓓 by random sampling (Efron & Tibshirani, 1993). Note, the variables in 𝓓 correspond to 

the same variables in the vector 𝛎 described earlier in this chapter. The use of notation here 

is to emphasize that 𝓓 is a complete data set with 𝑛 samples. Using the observed data, we 

estimate the unknown regression parameters 𝛃 using ML (as discussed in the previous 

section) and use our estimates 𝛃̂ to calculate indirect effects, denoted by 𝛉̂. Furthermore, 

we often wish to know something about 𝛉̂’s statistical behavior (e.g., bias, standard error, 

or confidence interval). Here, we use a vector notation for the indirect effects because using 

the matrix algebra approaches described earlier in this chapter to derive point estimators, 

𝑘 ≥ 1 indirect effects can be calculated simultaneously.  

On the right-hand side of Figure (1.5) is the bootstrap setting. In the bootstrap 

world, the empirical probability mechanism 𝑃̂ is used to generate 𝐵 bootstrap samples 

𝓓∗ = {𝛎𝑖
∗}𝑖=1
𝑛 = {𝑥𝑖

∗, 𝑚𝑖
∗, … , 𝑦𝑖

∗}1
𝑛 by randomly sampling uniformly from the rows of 𝓓 with 

replacement. That is, if 𝛎𝑖 is the 𝑖th row of the observed data, then 

 



www.manaraa.com

46 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1.5. Diagram of the bootstrap applied to mediation-type data structures; adapted 

from Efron and Tibshirani (1993). 𝓓 denotes an observed data set with 𝑛 samples and 𝑝 

variables. The dimensionality of 𝑝 reflects the variables in 𝛎 from previous sections.  

 

 
𝑃(𝛎𝑖 sampled) =

1

𝑛
 .  

In each of the 𝐵 bootstrap samples, we calculate a bootstrap replication of the unknown 

regression parameters and use our estimates 𝛃̂∗ to calculate indirect effects, denoted by 𝛉̂∗. 

Together, the 𝐵 bootstrap replications form the bootstrap distribution of the indirect 

effects of interest. The bootstrap distribution is an estimate of the indirect effect’s sampling 

distribution. Therefore, with an empirical sampling distribution at hand, biases, standard 

errors, and confidence intervals for indirect effects can be calculated directly.  

 The bootstrap approximation of the sampling distribution is not without error. The 

bootstrap approximates with sampling distribution with three sources of approximation 

error. First, simulation error arises from using finitely many replications to generate a 

statistic’s sampling distribution (Efron, 1987). Often simulation error can be attenuated by 

REAL WORLD 

Unknown 
Probability  

Model 

𝑃 

Observed Data 

𝓓 = {𝛎𝑖}1
𝑛 

𝛉̂ = 𝑔(𝛃̂|𝓓) 

Point Estimate of Indirect Effects 

BOOTSTRAP WORLD 

Estimated 
Probability  

Model 

𝑃̂ 

Bootstrap Sample 

𝓓∗ = {𝛎𝑖
∗}1
𝑛 

𝛉̂∗ = 𝑔(𝛃̂∗|𝓓∗) 

Bootstrap Replication 
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drawing a large number of bootstrap replications (e.g., 𝐵 ≥ 1,000). Second, statistical error 

arises because the empirical sampling distribution generated by the bootstrap replications 

under the estimated model 𝑃̂ is not equivalent to the theoretical sampling distribution of 

the statistic under the true data-generating process 𝑃 (Bickel & Freedman, 1981). Often 

statistical error can be attenuated by using bias-correction techniques (described below; 

Efron, 1987) for the final bootstrap estimates. Lastly, specification error arises because the 

data does not exactly follow our specified model. As a result, simulating the model never 

quite matches the actual sampling distribution. Specification error is attenuated by 

resampling from the data as opposed to simulating the probability model; this is the key 

idea of nonparametric bootstrapping (Efron & Tibshirani, 1993). 

  Before performing a bootstrap analysis based on Figure (1.5), we need to consider 

two problems. First, we have to determine how to estimate the probability mechanism 𝑃 

from the observed data 𝓓, denoted by the double arrow going from 𝓓 to 𝑃̂. There are 

several ways to conceptualize the probability model 𝑃 ⟶ 𝓓, however, we will only 

consider the nonparametric or row-resampling approach. In the nonparametric approach, 

𝑃 is the distribution function that generated 𝓓. As such, 𝑃 ⟶ 𝓓 means that 𝓓 is a random 

sample from 𝑃. If we treat 𝓓 as the complete population of data, we can estimate 𝑃 by the 

empirical distribution function 𝑃̂ based on 𝓓. The empirical distribution function is defined 

to be the discrete distribution that puts probability 1/𝑛 on each 𝛎𝑖, 𝑖 = 1,… , 𝑛 (Efron & 

Tibshirani, 1993). The second problem is determining how to simulate bootstrap data from 

𝑃̂ according to the relevant data structure. As mentioned above, to reduce specification 

error of bootstrapping, instead of simulating the probability model 𝑃̂, we randomly 

resample uniformly with replacement 𝑛 rows of 𝓓 to obtain a bootstrap sample 𝓓∗.  
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 After we have generated 𝐵 bootstrap samples and calculated 𝐵 bootstrap replicates 

for the indirect effects of interest, the overall bootstrap estimate 𝛉̅̂∗ of 𝛉 is given by the 

average of the 𝐵 replicates, 

 
𝛉̅̂∗ =

1

𝐵
∑ 𝛉̂∗𝑏
𝐵

𝑏=1

 .  

Empirically, the indirect effect is either estimated from the sample data 𝛉̂ (i.e., without 

bootstrapping; MacKinnon et al., 2004) or as the mean of the bootstrap distribution of the 

indirect effect 𝛉̅̂∗(Preacher & Hayes, 2004). In the present study we use the former method 

for estimating indirect effects since this method is most commonly implemented in popular 

SEM software packages (Rosseel, 2012). In practice, hypothesis testing of indirect effects is 

generally done using bootstrapped confidence intervals (CIs). Many methods for CIs from 

{𝛉̂∗𝑏}
1

𝐵
 have been proposed for indirect effects such as the percentile interval, bias-

corrected (BC) interval, and the bias-corrected and accelerated (BCa) interval (Efron, 

1987; MacKinnon et al., 2004; Preacher et al., 2007). For the purpose of the present study, 

however, we only consider the BC confidence interval because research has empirically 

shown the BC confidence interval to perform similar to the BCa interval in terms of Type I 

Error and power for conditional indirect effects, with smaller computational costs 

(Preacher et al., 2007), and better than BCa intervals and other resampling approaches 

(e.g., jackknife interval, bootstrap-𝑡 interval, Monte Carlo interval) in terms of Type I Error, 

power, and coverage probabilities for unconditional indirect effects (MacKinnon et al., 

2004).   
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The 100(1 − α)% BC confidence interval for the 𝑘th element of 𝛉 can be constructed 

using the percentiles α𝐿𝐿 and α𝑈𝐿 of {𝛉̂𝑘
∗𝑏}

𝑏=1

𝐵
. Here 

 α𝐿𝐿 = Φ(2𝑧0 + 𝑧α)  

 and  

 α𝑈𝐿 = Φ(2𝑧0 + 𝑧1−α),  

where Φ is the standard cumulative normal distribution function and 𝑧α is the α percentile 

of the standard normal distribution and 

 
𝑧0 = Φ−1 (

∑ 𝐼(𝛉̂𝑘
∗𝑏 < 𝛉̂𝑘)

𝐵
𝑏=1

𝐵
),  

where 𝐼(𝛉̂𝑘
∗𝑏 < 𝛉̂𝑘) is an indicator function defined as 

 
𝐼(𝛉̂𝑘

∗𝑏 < 𝛉̂𝑘) = {
1, 𝛉̂𝑘

∗𝑏 < 𝛉̂𝑘
0, 𝛉̂𝑘

∗𝑏 ≥ 𝛉̂𝑘
.  

Here, 𝑧0 is defined to measure the median bias of the bootstrap distribution of the indirect 

effect. In the case of no bias, the bootstrap distribution is symmetric and ∑ 𝐼(𝛉̂𝑘
∗𝑏 < 𝛉̂𝑘)

𝐵
𝑏=1 /

𝐵 = 0.5, which implies that Φ−1(0.5) = 0 and the CI limits reduce to α𝐿𝐿 = Φ(𝑧α) and 

α𝑈𝐿 = Φ(𝑧1−α). 

1.5.3. Bayesian bootstrap. The Bayesian analog of the nonparametric bootstrap (i.e., 

Efron’s bootstrap) was proposed by Rubin (1981) called the Bayesian bootstrap (BB). To 

understand the BB, suppose that the observed data vector 𝐱 can assume at most 𝐾 distinct 

values given by the vector 𝐝 = [𝑑1, 𝑑2, … , 𝑑𝐾]. Let 𝐰 = [𝑤1, 𝑤2, … , 𝑤𝐾]
′ be the vector of 

probabilities defined as 

𝑃𝑟(𝑥𝑖 = 𝑑𝑘|𝐰) = 𝑤𝑘 ,          ∑𝑤𝑘 = 1

𝐾

𝑘=1

. 
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Assuming 𝑥1, 𝑥2, … , 𝑥𝑛 given 𝐰 are independent, the BB applies the improper prior 

distribution on 𝐰 

 

π(𝐰) = {
∏𝑤𝑘

−1

𝐾

𝑘=1

, if ∑𝑤𝑘 = 1

𝐾

𝑘=1

0, otherwise

 (1.56) 

Under the nonparametric bootstrap, 𝐰 is also a vector of sampling weights, but now 

𝑤𝑗 =
𝑛𝑗

𝑛
 is the probability that a sample point falls in category 𝑗, for 𝐾 distinct categories. 

The nonparametric bootstrap distribution, obtained by sampling with replacement from 

the data, is realized as sampling the category proportions from a multinomial distribution  

 𝑛𝐰 ~ Multinomial(𝑛, 𝐰̂), (1.57) 

where 𝐰̂ = [𝑤̂1, … , 𝑤̂𝐾]
′ are the observed probabilities. The multinomial distribution of the 

nonparametric bootstrap sampling weights in (1.57) is proportional to  

 
𝑃(𝑛𝐰) ∝∏𝑤̂𝑘

𝑛𝑤𝑘

𝐾

𝑘=1

=∏𝑤̂𝑘
𝑛𝑘

𝐾

𝑘=1

 (1.58) 

The mean and variance of the 𝑗th nonparametric bootstrap weight from (1.58) are given by 

𝐸(𝐰𝑗) = 𝐸 (
𝑛𝑗

𝑛
) 

=
1

𝑛
 

and  

𝑉𝑎𝑟(𝐰𝑗) = 𝑉𝑎𝑟 (
𝑛𝑗

𝑛
) 

=
1

𝑛2
(1 −

1

𝑛
) 

=
𝑛 − 1

𝑛3
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since each 𝑛𝑗  ~ Binomial (𝑛,
1

𝑛
).  

Applying the improper prior in (1.56) for 𝐰, we obtain the posterior distribution of 

𝐰 as proportional to 

𝑃(𝐰|𝐱) ∝∏𝑤𝑘
𝑛𝑘−1

𝐾

𝑘=1

, 

which is the kernel of a (𝐾 − 1)-dimensonal Dirichlet distribution (Cohen, 1997). Under 

this posterior distribution, the mean and variance of the 𝑗th BB sampling weight are given 

by 

𝐸(𝐰|𝐱) =
1

∑ 𝑛𝑘
𝐾
𝑘=1

 

=
1

𝑛
 

and  

𝑉𝑎𝑟(𝐰|𝐱) =
𝑛 − 1

𝑛2(𝑛 + 1)
. 

Comparing Efron’s nonparametric bootstrap to the Rubin’s BB bootstrap, we see the 

following relations, 

𝐸(𝐰Efron) = 𝐸(𝐰Rubin) =
1

𝑛
 

𝑉𝑎𝑟(𝐰Efron) = 𝑉𝑎𝑟(𝐰Rubin) (
𝑛 + 1

𝑛
) . 

If we denote any estimator by ℎ(∙) (e.g., indirect effect), the nonparametric bootstrap 

distribution of our estimator ℎ(𝐰Efron) will closely approximate the posterior distribution 

of ℎ(𝐰Rubin) (Hastie et al., 2009). 
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Although the BB is slightly more complicated than the nonparametric bootstrap, BB 

can be conducted using a two-step procedure as described in Rubin (1981) and Cohen 

(1997): (1) independently draw 𝑛 uniform random variables between 0 and 1 and order 

them such that 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛, where 𝑢1 = 0 and 𝑢𝑛 = 1, (2) define a vector of 

differences 𝐰 = [𝑢1 − 𝑢0, 𝑢2 − 𝑢1, … , 𝑢𝑛−1 − 𝑢𝑛]. Draw each of the 𝑛 values in 𝐱∗𝑏 by 

drawing from 𝑥1, 𝑥2, … , 𝑥𝑛 with associated probabilities defined by 𝐰. In practice, the BB 

can be sampled in two different stages: (1) the number of bootstrap samples, and (2) the 

number of resamples to draw at each bootstrap sample. The idea behind a two-stage 

sampling scheme for BB is used to obtain bootstrap samples that reflect the correct 

frequency as the weights defined in 𝐰. In other words, since the sampling weights are not 

uniform, more samples can be drawn (e.g., 1,000) for each Bayesian bootstrap sample so 

that the frequency of rows in a particular sample more accurately reflect the sampling 

weight associated with the row. Importantly, despite the difference in implementation, Lo 

(1987) showed that the BB has the same desirable asymptotic convergence properties as 

the nonparametric bootstrap. 

 In missing data applications, the most common application of the BB is in multiple 

imputation of missing data, specifically using the approximate Bayesian bootstrap (ABB; 

Rubin, 1987). Rubin (1996) recommends using the BB to incorporate a systematic 

between-imputation component of variability when drawing missing values from observed 

values. In other imputation scheme, Rubin (1996) notes that the BB can be used to 

automatically incorporate parameter uncertainty in the estimation of population 

parameters. In non-missing data applications, research has shown that the BB often leads 

to similar and sometimes narrower confidence intervals than the nonparametric bootstrap 
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(Taddy, Chen, Yu, & Wyle, 2015). Theoretically, the nonparametric bootstrap can be viewed 

as an approximation to the BB (Hastie, Tibshirani, & Friedman 2009), which would explain 

the similarities in confidence interval lengths (Taddy et al., 2015). In practice, the BB 

distribution tends to be smoother than the nonparametric bootstrap distribution (Rubin, 

1981), which is due to its smoother choices of sampling weights. 

 Recent research has demonstrated the benefits of Bayesian estimation for testing 

indirect effects in mediation (Enders et al., 2013; Yuan & MacKinnon, 2009) and moderated 

mediation models (Wang & Preacher, 2015). A drawback with proper Bayesian estimation, 

however, is that model specification requires additional steps, that is, by specifying prior 

distributions for all model parameters (Muthén & Asparouhov, 2012). Although some SEM 

software (e.g., Mplus) sets default prior distributions for all model parameters 

automatically, other non-SEM software (e.g., WinBUGs, PyMCMC, Stan) that can estimate 

Bayesian SEMs, require the user to explicitly specify priors for all model parameters. As an 

SEM model becomes increasingly complex (e.g., additional parameters and mixed variable 

types), Bayesian estimation can also become increasingly complex (Lee, 2007). In some 

cases, to exactly sample from a parameter’s posterior distribution, models may need to be 

reparametrized to use the same sampler across all parameters or hybrid MCMC samplers 

(e.g., Gibbs and sequential Monte-Carlo) may need to be used (Gelman, Carlin, Stern, 

Dunson, Vehtari, & Rubin, 2013).  

For example, consider the simple mediation model in (1.3) (ignoring the exogenous 

variable model) where the errors of 𝑓(𝑀|𝑋, 𝛉𝑀) follow a normal distribution and the errors 

of 𝑓(𝑌|𝑋,𝑀, 𝛉𝑌) follow a Bernoulli distribution. The regression analogs of this setup are to 

use a linear regression model to estimate 𝛉𝑀 for 𝑓(𝑀|𝑋, 𝛉𝑀) and logistic regression model 
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to estimate 𝛉𝑌 for 𝑓(𝑌|𝑋,𝑀, 𝛉𝑌). For 𝛉𝑀, common priors in practice include using a non-

informative prior such as Jeffrey’s prior or conjugate priors for 𝛉𝑀, which include an 

inverse-gamma distribution for the variance and normal distributions for the regression 

parameters (Gelman et al., 2013). In both cases, Jeffrey’s prior and conjugate priors lead to 

a tractable normal-inverse Wishart posterior distribution for 𝑃(𝛉𝑀|𝑀, 𝑋) that can be 

exactly sampled from using a standard Gibbs sampler (Press, 1972).  

With regards to 𝛉𝑌, assume we follow common practice and use normal priors for 

the regression parameters in 𝛉𝑌 (Groenewald & Mokgatlhe, 2005). Now, since the normal 

distribution is not the conjugate prior of the likelihood function in logistic regression, the 

posterior distribution for 𝑃(𝛉𝑌|𝑌,𝑀, 𝑋) is difficult to calculate. To exactly sample from 

𝑃(𝛉𝑌|𝑌,𝑀, 𝑋) using a Gibbs sampler, since the full conditionals are intractable, we could 

reparametrize the logistic model using the latent variable approach described in 

(Groenewald & Mokgatlhe, 2005) and then apply a Gibbs sampler. Alternatively, we could 

use a sequential Monte-Carlo sampler as described in Geweke, Durham, and Hu (2013). 

Although other methods exist, such as using approximate MCMC samplers, these methods 

are not without their drawbacks. For instance, if approximate MCMC methods are used, 

careful diagnostic checking is required for each parameter’s posterior distribution to 

determine if the approximate MCMC sampler converged to the stationary multivariate 

posterior distribution.  

The complexities of proper Bayesian SEM estimation and limited SEM software to 

conduct proper Bayesian inference may contribute to the widespread use of alternative 

methods to testing indirect effects, such as the bootstrap. Empirically, the bootstrap has 

been found to work well with unconditional and conditional indirect effects testing, despite 
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some minor drawbacks with small sample sizes (Koopman, Howe, Hollenbeck, & Sin, 

2015). Importantly, by simply changing the resampling scheme of the classic bootstrap, the 

Bayesian bootstrap simulates a parameter’s posterior distribution without having to 

specify priors explicitly on the model parameters. However, with regards to estimation and 

inference in mediation models, despite its similarity to the nonparametric bootstrap and 

ease of implementation, the performance of the BB in estimating indirect type effects is 

unknown. 
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CHAPTER 2 

MISSING DATA IN STRUCTURAL EQUATION MODELS 

 

 2.1. Overview 

 Missing data is a pervasive problem that affects nearly all research domains. In 

psychological research, the most common data used in structural equation modeling is that 

of survey data, which is inherently susceptible to missing data problems (Rubin, 1987). 

Fortunately, several techniques are available to estimate SEMs with missing data. This 

chapter introduces two methods to handle missing data in SEMs, namely model-based 

estimation techniques, and imputation techniques.  

Missing data can be categorized based on the pattern of missing data and the 

missing data mechanism. The pattern of missing data describes which values are observed 

and which values are missing. Although there are many distinct patterns of missingness 

(e.g., see Little & Rubin, 2002 for an overview), we will only consider the so-called ‘general 

case’ of missingness. Figure 2.1 presents the case of a complete multivariate data set; an 

example of a general missingness pattern for a multivariate data set is given in Figure 2.2. 

More importantly, the second category for missing data classification regards the type or 

mechanism of missing data. Here, the type of missing data describes the relationship 

between the missingness and the values of variables in the data matrix.  

2.1.1. Missing data mechanisms. Rubin (1976) describes three distinct types of 

missing data: (1) missing completely at random (MCAR), (2) missing at random   
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 1 2 3 ∙∙∙ 𝑝 
1      
2      
3      
4      
5      
6      
∙      
∙      
∙      
𝑛      

 

𝐹𝑖𝑔𝑢𝑟𝑒 2.1. Complete multivariate data set. 

 

 1 2 3 ∙∙∙ 𝑝 
1 ?     
2   ?   
3      
4 ?     
5   ?   
6     ? 
∙  ?    
∙    ?  
∙      
𝑛      

 

𝐹𝑖𝑔𝑢𝑟𝑒 2.2. General missingness pattern for incomplete multivariate data set, where ? 

denotes a missing value. 

 

(MAR), and (3) missing not at random (MNAR). Let 𝐑 be an 𝑛 × 𝑝 matrix of indicator 

values defined by 

 
𝐑 = {

1, if 𝑥𝑖𝑗  is observed

0, if 𝑥𝑖𝑗  is missing
, (2.1) 

and let 𝐗 = (𝐗obs, 𝐗mis), where 𝐗obs denote the 𝑛1 rows of fully observed data and 𝐗mis 
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denote the 𝑛2 = 𝑛 − 𝑛1 rows containing missing values on 𝑝 ≥ 1 variables (Schafer, 1997). 

The matrix R stores the (𝑖, 𝑗) locations of the missing data in 𝐗. To formalize the 

mechanisms of missing data, a probability model is posited between 𝐑 and 𝐗, 

𝑃(𝐑|𝐗obs, 𝐗mis, 𝛙), where 𝛙 is the parameter vector corresponding to the parameters of 

the missing data model (van Buuren, 2012). The distribution of 𝐑 may depend on 𝐗 =

(𝐗obs, 𝐗mis), and this dependence is what characterizes the missing data mechanism; this 

relation is what is referred to as the missing data model (Rubin, 1987). 

In the simplest missing data model, the data are said to be MCAR if the distribution 

of 𝐑 does not depend on 𝐗obs or 𝐗mis 

 𝑃(𝐑 = 0|𝐗𝑜𝑏𝑠, 𝐗mis, 𝛙) = 𝑃(𝐑 = 0|𝛙), (2.2) 

for all 𝐗 and 𝛙. Under model (2.2), the probability of missing data depends only on some 

parameter 𝛙. MCAR is the ideal missing data mechanism in which the missing data values 

are a simple random sample of all data values (Graham, 2009). Compared to MCAR, MAR is 

a more realistic assumption of the missing data mechanism in practice. Specifically, MAR 

assumes that the missing values behave like a random sample of all values within 

subclasses defined by observed data (Schafer & Graham, 2002). The data are said to be 

MAR if the distribution of 𝐑 does not depend on 𝐗mis 

 𝑃(𝐑 = 0|𝐗obs, 𝐗mis, 𝛙) = 𝑃(𝐑 = 0|𝐗obs, 𝛙), (2.3) 

for all 𝐗mis and 𝛙. Under MAR, the missingness probability may depend on observed 

information. Lastly, the most restrictive missing data mechanism is MNAR. The data are 

said to be MNAR if the distribution of 𝐑 depends on the missing data, 𝐗mis, or equivalently 

that  

 𝑝(𝐑 = 0|𝐗obs, 𝐗mis, 𝛙)  
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does not simplify. Under MNAR, the probability of missingness depends on observed 

information and also on unobserved information, including 𝐗mis (Enders, 2010). 

 2.1.2. Ignorability. In practical applications, the focus is on making inferences about 

the model parameters 𝛉 as opposed to the missing data parameters 𝛙. In this case, 𝛙 is 

treated as a nuisance parameter (Basu, 1977; Casella & Berger, 2001). Importantly, as 

Schafer (1997) notes, 𝛉 refers to the parameters of the complete data 𝐗 and not the 

parameters for the distribution of 𝐗obs alone. As such, the end goal of the analysis is to 

make inferences about the parameters of the complete-data model as opposed to the 

parameters of the marginal distribution of only the observed data. In terms of estimation 

and inference of 𝛉, the analysis would be simplified if the nuisance parameter 𝛙 could be 

ignored. This latter simplification underscores the importance of distinguishing between 

MCAR, MAR, and MNAR because these mechanisms clarify the conditions under which we 

can estimate and make inferences about 𝛉 without having to know 𝛙 (Rubin, 1976).  

With missing data, the observed data consist not only of 𝐗obs but also of 𝐑, which 

implies that the joint probability distribution of the observed data is given by  

𝑃(𝐗obs, 𝐑|𝛉,𝛙) = ∫𝑃(𝐗, 𝐑|𝛉,𝛙)𝑑𝐗mis 

= ∫𝑃(𝐑|𝐗,𝛙)𝑃(𝐗|𝛉)𝑑𝐗mis , 

where the integral is replaced by a summation in the discrete case. The condition required 

to estimate and make inferences about 𝛉 without knowing the 𝛙 is called ignorability. 

Ignorability has two conditions: (1) the missing data mechanism is MAR and (2) 𝛉 and 𝛙 

are distinct (Rubin, 1976, 1987; Schafer, 1997). For the first condition, recall that under 

MAR the missing data does not depend on the missing values themselves (see Equation 
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[2.3]). For the second condition, we can describe the distinctiveness condition from two 

perspectives. From a frequentist perspective the distinctiveness of 𝛉 and 𝛙 implies that the 

joint parameter space of (𝛉,𝛙) is the Cartesian cross-product of the individual parameter 

spaces for 𝛉 and 𝛙 (Schafer, 1997). From the joint probability model of the observed data, 

under the MAR assumption,  

 
𝑃(𝐗obs, 𝐑|𝛉,𝛙) = 𝑃(𝐑|𝐗obs, 𝛙)∫𝑃(𝐗|𝛉)𝑑𝐗mis 

= 𝑃(𝐑|𝐗obs, 𝛙)𝑃(𝐗obs|𝛉). 

 

(2.4) 

From (2.4), the likelihood of the observed data under MAR can thus be factored into two 

pieces, one pertaining to the nuisance parameter 𝛙, 𝑃(𝐑|𝐗obs, 𝛙), and the other pertaining 

to the parameter of interest 𝛉, 𝑃(𝐗obs|𝛉). When the two parameters are distinct, then 

likelihood-based inferences about 𝛉 will be unaffected by 𝑃(𝐑|𝐗obs, 𝛙) (Little & Rubin, 

2002). Under these conditions, the missing data mechanism can be safely ignored (Little & 

Rubin, 1987; Rubin, 1976), that is, we do not need to consider the model for 𝐑 nor the 

nuisance parameters 𝛙 when making inferences about 𝛉. Little and Rubin (1987) refer to 

the factor in (2.4) as the likelihood ignoring the missing data mechanism as the observed-

data likelihood 

 𝐿(𝐗obs|𝛉) ∝ 𝑃(𝐗obs|𝛉).  

From a Bayesian perspective, the distinctiveness assumption implies that a joint 

distribution applied to (𝛉,𝛙) factors into independent marginal priors for 𝛉 and 𝛙 

(Schafer, 1997). In Bayesian analysis, all inferences are based on a posterior probability 

distribution for unknown parameters that conditions on the quantities that are observed 

(Gelman et al., 2013). For instance, let 𝛉 denote the parameter vector for a given model and 

𝐗 denote the observed data. Bayesian estimation involves three general steps: (1) 
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specifying a joint probability model for all observable and unobservable quantities in a 

problem, 𝑃(𝐗, 𝛉), (2) deriving the posterior distribution, that is, the distribution of the 

model parameters conditioning on the observed data, 𝑃(𝛉|𝐗), and (3) evaluating the fit of 

the model and statistical estimates from the posterior distribution. Using basic rules about 

conditional probabilities, the joint probability model 𝑃(𝐗, 𝛉) can be written as the product 

of two densities, the prior distribution for 𝛉 and data distribution for 𝐗|𝛉, 

 𝑃(𝐗, 𝛉)⏟    
Joint

= 𝑃(𝐗|𝛉)⏟    
Data

𝑃(𝛉)⏟
Prior

. 
 

In order to make probability statements about 𝛉 given 𝐗, the posterior distribution is 

needed. After specifying the joint probability model, by conditioning on the observed data 

and applying Bayes’ rule, the posterior distribution can be derived 

 
𝑃(𝛉|𝐗) =

𝑃(𝐗, 𝛉)

𝑃(𝐗)
 

=
𝑃(𝐗|𝛉)𝑃(𝛉)

𝑃(𝐗)
, 

 

(2.5) 

where 𝑃(𝐗) = ∫𝑃(𝐗|𝛉)𝑃(𝛉)𝑑𝛉 for continuous 𝛉 or 𝑃(𝐗) = ∑ 𝑃(𝐗|𝛉)𝑃(𝛉)𝛉  for discrete 𝛉. 

Given that 𝑃(𝐗) does not depend on 𝛉 and with fixed 𝐗, 𝑃(𝐗) can be viewed as a 

normalizing constant. Thus, a proportional form of (2.5) omits this normalizing constant  

 𝑃(𝛉|𝐗) ∝ 𝑃(𝐗|𝛉)𝑃(𝛉).  

The term, 𝑃(𝐗|𝛉), when regarded as a function of 𝛉 for fixed 𝐗 is the familiar likelihood 

function used in ML estimation. As such, the data only affect the posterior distribution 

through the likelihood function.  

By Bayes’ Theorem, the posterior distribution of (𝛉,𝛙) may be written as 
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𝑃(𝛉,𝛙|𝐗obs, 𝐑) =

𝑃(𝐗obs, 𝐑|𝛉,𝛙)𝜋(𝛉,𝛙)

𝑃(𝐗obs, 𝐑)
 

∝ 𝑃(𝐗obs, 𝐑|𝛉,𝛙)𝜋(𝛉,𝛙) 

 

(2.6) 

where 𝜋(∙) denotes a joint prior distribution applied to (𝛉,𝛙) and 𝑃(𝐗obs, 𝐑) is given by 

 
𝑃(𝐗obs, 𝐑) = ∫∫𝑃(𝐗obs, 𝐑|𝛉,𝛙)𝜋(𝛉,𝛙)𝑑𝛉𝑑𝛙. (2.7) 

Under the MAR assumption, (2.6) becomes 

 𝑃(𝛉,𝛙|𝐗obs, 𝐑) ∝ 𝑃(𝐑|𝐗obs, 𝛙)𝑃(𝐗obs|𝛉)𝜋(𝛉,𝛙). (2.8) 

Moreover, 𝛉 and 𝛙 are distinct, the prior distribution factors as 

 𝜋(𝛉,𝛙) = 𝜋(𝛉) 𝜋(𝛙)  

and now (2.6) simplifies to 

 𝑃(𝛉,𝛙|𝐗obs, 𝐑) ∝ 𝑃(𝐑|𝐗obs, 𝛙)𝑃(𝐗obs|𝛉)𝜋(𝛉)𝜋(𝛙).  

Bayesian inferences about 𝛉 are based on the marginal posterior obtained by integrating 

the function over the nuisance parameter 𝛙 (Lee, 2007). Hence, under ignorability, the 

marginal posterior distribution for 𝛉 is 

𝑃(𝛉|𝐗obs, 𝐑) = ∫𝑃(𝛉,𝛙|𝐗obs, 𝐑)𝑑𝛙 

∝ ∫𝑃(𝐑|𝐗obs, 𝛙)𝑃(𝐗obs|𝛉)𝜋(𝛉)𝜋(𝛙)𝑑𝛙 

∝ 𝑃(𝐗obs|𝛉)𝜋(𝛉)∫𝑃(𝐑|𝐗obs, 𝛙)𝜋(𝛙)𝑑𝛙 

∝ 𝐿(𝛉|𝐗obs)𝜋(𝛉), 

where the proportionality is up to a multiplicative factor that does not involve 𝛉 (Schafer, 

1997). This result implies that 𝑃(𝛉|𝐗obs, 𝐑) = 𝑃(𝛉|𝐗obs). Therefore, under the ignorability 

condition all information about 𝛉 is summarized in the posterior that ignores the missing-

data mechanism, 
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 𝑃(𝛉|𝐗obs) ∝ 𝐿(𝛉|𝐗obs)𝜋(𝛉). (2.9) 

The form of (2.9) is called the observed-data posterior (Little & Rubin, 2002).  

The concept of ignorability plays an important role in the construction of imputation 

models. Briefly, in imputing missing data we want to draw synthetic observations from the 

posterior distribution of the missing data, given the observed data and process that 

generated the missing data, that is, 𝑃(𝐗mis|𝐗obs, 𝐑). Under ignorability, the posterior 

distribution of the missing data does not depend on 𝐑, 

 𝑃(𝐗mis|𝐗obs, 𝐑) = 𝑃(𝐗mis|𝐗obs). (2.10) 

Assuming (2.10) holds, the implication is that 

 𝑃(𝐗|𝐗obs, 𝐑 = 1) = 𝑃(𝐗|𝐗obs, 𝐑 = 0),  

so the distribution of the data 𝐗 is the same in the response and nonresponse groups (van 

Buuren & Groothuis-Oudshoorn, 2011). Most importantly, if the missing data model is 

ignorable we can model the posterior distribution 𝑃(𝐗|𝐗obs, 𝐑 = 1) from the observed 

data, and use this model to create imputations for the missing data. In other words, 

ignorability is the assumption that the available data 𝐗obs are sufficient to correct for the 

effects of missing data 𝐗mis (van Buuren, 2007), however, this assumption is theoretical 

and cannot be tested on the data itself. In many situations, however, the MAR assumption is 

tenable and the distinctiveness assumption is intuitive, as knowing 𝛉 will provide little 

information about 𝛙 and vice-versa (Little & Rubin, 2002; Schafer, 1997, van Buuren, 

2012). 

2.2. Model-Based Methods for Missing Data 

The ‘gold standard’ model-based method for handling missing data in SEMs is full-

information maximum likelihood (FIML) when all response variables are continuous and 
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weighted-least squares (WLS) when at least one response variable is categorical. FIML 

assumes the joint distribution of observed and missing variables is multivariate normal. 

Rather than impute missing values, FIML routines use all available data when estimating 

model parameters (Arbuckle, 1996; Enders, 2001). For mediation-type models, the 

maximum likelihood estimators with incomplete data are still obtained by maximizing the 

log-likelihood of the data with complete data, 

 
ℓ(𝛉|𝛎) =∑log𝑓(𝛎𝑌𝑖|𝛈𝑌𝑖 , 𝛉𝑌)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑀𝑖
|𝛈𝑀𝑖

, 𝛉𝑀)

𝑛

𝑖=1

+∑log𝑓(𝛎𝑋𝑖|𝛈𝑋𝑖 , 𝛉𝑋)

𝑛

𝑖=1

, 

(2.11) 

but now the density functions 𝑓 are based on available data. Conceptually, FIML is similar 

to pairwise-deletion (Enders, 2001). Under the model parametrization given in (2.11), if an 

endogenous variable, say 𝑌, has a missing value, then the entire observation is removed 

(including other variables in the log-likelihood) and the observation contributes nothing to 

the log-likelihood. This case is analogous to listwise deletion.  

On the contrary, consider the case in which there are no missing values for an 

endogenous variable, 𝑌, no missing values for a covariate 𝑋, but 𝑟 missing values for a 

covariate 𝑀. If we want to use FIML to estimate the regression parameters of the linear 

model 𝑌 = α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑀𝑀+ ζ𝑌 based on a random sample of size 𝑛, then the log-

likelihood function we would need to maximize would be of the form  

ℓ(𝛉|𝛎) =∑log𝑓(𝑦𝑖|𝑥𝑖, α𝑌, β𝑌∙𝑋)

𝑛

𝑖=1⏟              
{𝑌,𝑋} observed

+∑ log𝑓(𝑦𝑖|𝑥𝑖, 𝑚𝑖, α𝑌, β𝑌∙𝑋 , β𝑌∙𝑀)

𝑛−𝑟

𝑖=1⏟                    
{𝑌,𝑋,𝑀} observed

. 

The first term on the right-hand side of this equation is based only on the set of 𝑛 
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observations where {𝑌, 𝑋} are observed; the second term on the right-hand side of this 

equation is based only on the set of 𝑛 − 𝑟 observations where {𝑌, 𝑋,𝑀} are observed. 

Importantly, the regression coefficients α𝑌 and β𝑌∙𝑋 are estimated data from both {𝑌, 𝑋} and 

{𝑌, 𝑋,𝑀}, whereas, the regression coefficient β𝑌∙𝑀 is estimated using only data from 

{𝑌, 𝑋,𝑀}. Hence, the MLEs are obtained using all available information. It is important to 

note that most implementations of FIML do not consider covariates as an explicit part of 

the model, therefore, if missing data are present for any covariates, the entire row is 

excluded from further analysis.    

 The WLS approach to handling missing data is similar to FIML, but does not make 

the assumption of multivariate normality. A common implementation of WLS to estimate 

parameters in the presence of missing data relies on a three-stage approach described in 

Muthén (1984): (1) using univariate probit regression models, estimate the thresholds of 

categorical response variables using ML estimation, (2) holding estimates in (1) fixed, 

estimate the bivariate correlations (e.g., tetrachoric, biserial, pearson, etc.) in the data using 

ML estimation, and (3) estimate the model parameters by minimizing a WLS objective 

function given by, 

𝐹𝑊𝐿𝑆 = ∑(𝐬(𝑔) − 𝛔̂(𝑔))
′
𝐖(𝑔)−1(𝐬(𝑔) − 𝛔̂(𝑔))

𝐺

𝑔=1

, 

where 𝑔 denotes the group with specific missing data pattern, 𝐬(𝑔) contains all relevant 

sample-based statistics (i.e., level 1 and level 2 estimates) for the 𝑔th group, 𝛔̂(𝑔) contains 

all relevant model-based statistics for the 𝑔th group (i.e., statistics implied by the structural 

equation model), and 𝐖(𝑔)−1 is a positive definite weight matrix as described in Muthén 

(1984). At the first two stages of estimation, only pairwise information is used. Moreover, 
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similar to FIML, most implementations of WLS for missing data do not consider covariates 

as an explicit part of the model; therefore, observations with missing data on the covariates 

are excluded from further analysis.  

 FIML is an attractive option for missing data problems in SEMs because when the 

observed information matrix is used, the MLEs remain consistent under the MAR 

mechanism (Little & Rubin, 2002) for both normal data and non-normal data (Yuan, 2009; 

Yuan & Bentler, 2000). However, given the asymptotic conditions needed to obtain the 

desirable properties of MLEs, research has shown that in smaller sample sizes (i.e., 100 ≤

𝑁 ≤ 200) with a large proportion of missing data (e.g., 20%), FIML estimators have lower 

than nominal coverage and rejection rates (Savalei, 2010), even using robust corrections 

for non-normality (i.e., the sandwich estimator). To help combat the potential limitations of 

FIML estimators in small samples, Enders et al. (2013) showed that a nonparametric 

bootstrap can be used. Specifically, Enders et al. (2013) found that for under a MAR 

mechanism, combining FIML with a BC bootstrap routine for estimating indirect effects 

(based on a simple mediation model) resulted in coverage rates and empirical power 

estimates that reached nominal levels with sample sizes as small of 𝑁 = 100 under specific 

conditions (e.g., large effects simulated). These findings highlight the advantages that 

bootstrapping can have in small data sets, but are limited in scope since all simulations 

were conducted using multivariate normal data.  

 Although less research has systematically examined the empirical performance of 

WLS for estimating parameters in the presence of missing data, the extant research shows 

that Muthén’s (1984) three-stage WLS implementation produces estimates that are 

consistent and efficient when the missing data mechanism is MCAR or MAR (Asparouhov & 
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Muthén, 2010).  

2.3. Imputation-Based Methods for Missing Data 

 A limitation of using model-based estimation methods to handle missing data is that 

as both the number of variables and missingness patterns increase in a data set, the 

likelihood function becomes intractable to optimize (Enders, 2010); in SEMs sparse data 

often result in nonpositive definite covariance matrices and inadmissible solutions (Kline, 

2010; Rosseel, 2012). Again, although bootstrap may remedy situations where sparseness 

applies, a flexible alternative is to consider imputation-based methods to estimate 

parameters with missing data. The general idea behind imputation methods for missing 

data is that missing values are ‘filled-in’ with plausible values. For single imputation 

methods, only one complete data set is generated, for multiple imputation methods, 𝑀 

complete data sets are generated. Complete data estimation techniques (e.g., maximum 

likelihood) can be used on filled-in data sets to obtain parameter estimates pooled for 

multiple imputation (MI) methods (Enders, 2010). 

2.3.1. Mean imputation. A naïve, but often used single imputation method for 

handling missing values is mean imputation. As shown in Algorithm (2.1), under this 

method for imputation the missing values for a continuous-valued variable are filled-in 

using the arithmetic mean of the observed values, whereas, the missing values for discrete-

valued variables are filled-in using the modal value of the observed values. Although mean 

imputation is easy to understand and implement in practice, it can severely distort 

estimates and inferences, especially when data are not MCAR (Collins, Schafer, & Kam, 

2001; Cook, Zeng, & Yi, 2004; Jansen, Beunckens, Molenberghs, Verbeke, & Mallinckrodt, 

2006). In fact, even if one can avoid bias in parameter estimates, the mean imputation  
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Algorithm 2.1: Mean Imputation for Missing Data 
Require: 𝐗𝑛×𝑝 = (𝐗obs, 𝐗mis) matrix sorted by missingness 
  1. for 𝑗 ← 1 to 𝑝 do 
  2. if any(𝐱𝑗) missing 

  3. 𝒾obs ← {indices observed data in 𝐱𝑗} 

  4. 𝒾mis ← {indices missing data in 𝐱𝑗} 

  5. if 𝐱𝑗  is continuous 

  6. 𝐱𝒾mis(𝑗)
← mean(𝐱𝒾obs(𝑗))  

  7. Else 
  8. 𝐱𝒾mis(𝑗)

← mode(𝐱𝒾obs(𝑗))  

  9. end if 
10. end if 
11. end for 

 

method can still severely distort a variable’s distribution by artificially reducing its 

variability (Allison, 2003). Given that methods such as ML estimation assume that all data 

are real, if some data are imputed, the imputation process introduces additional sampling 

variability that is not adequately accounted for. Importantly, artificially reducing variability 

can lead to underestimated standard errors and higher rates of Type I error (Horton & 

Kleinman, 2007). Therefore, unless a very small percentage of values are missing, best 

practice is to avoid mean imputation altogether (and other single imputation methods) in 

favor of more flexible (MI) methods (Schafer & Graham, 2002).  

2.3.2. Basic theory of multiple imputation. The goal of MI is to find an estimate 𝛉̂ of 𝛉 

that is both unbiased and confidence valid in the presence in missing data (Rubin, 1996). 

The unbiased condition implies that 

 𝐸(𝛉̂|𝐗) = 𝛉. (2.12) 

Let 𝐔 be the estimated variance-covariance matrix of 𝛉̂, then the confidence valid condition 

implies that  
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 𝐸(𝐔|𝐗) ≥ 𝑉𝑎𝑟(𝛉̂|𝐗), (2.13) 

where 𝑉𝑎𝑟(𝛉̂|𝐗) is the variance attributable to sampling error. The confidence valid 

condition states that the average of 𝐔 over all possible samples is at least as large as the 

sampling variance of 𝛉̂. As applied to hypothesis testing, the goal of multiple imputation is 

to obtain unbiased estimates of 𝛉 (2.12) with associated confidence intervals and 

hypothesis tests that should achieve at least the nominal rejection rates (2.13) (Rubin, 

1987, 1996).  

As compared to single imputation, MI is a more robust and flexible approach for the 

analysis of incomplete data sets. A statistical analysis using MI involves three general steps: 

(1) generating 𝑀 plausible imputations for missing values (based implicitly or explicitly 

from a joint model), (2) analyzing each of the 𝑀 pseudo-complete data sets as if the data 

sets were complete (i.e., contained no missing values), and (3) pooling (or combining) the 

𝑀 set of parameter estimates together to obtain aggregate parameter estimates based on 

the multiply imputed data. The two widely used frameworks for generating imputations 

are using an explicit joint model (JM) or an implicit joint model estimating through a series 

of conditionally specified models, called fully conditionally specification (FCS).  

The former joint modeling framework follows the theoretical framework pioneered 

by Rubin (1976). Let 𝐗 denote a data matrix with partially observed variables and 𝐑 be the 

missing data indicator matrix of 𝐗 as defined in (2.1). In the JM approach, imputations are 

generated using three steps: (1) modeling; specify joint distribution of all the data, 𝑃(𝐗, 𝐑), 

(2) imputation; derive the posterior predictive distribution of the missing values given the 

observed data, 𝑃(𝐗mis|𝐗obs, 𝐑), and (3) estimation; calculate the posterior distribution of 

the parameters 𝛉 so that random draws can be made from it (van Buuren, 2007).  
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In generating imputations under the JM, a repeated imputation procedure is used 

(Li, Raghunathan, & Rubin, 1991). Repeated imputations are draws from the posterior 

predictive distribution of missing values under a Bayesian model that accounts for both the 

observed data and missing data mechanism (Little & Rubin, 2002; Rubin, 1996). After 𝑀 

set of imputations are generated under an imputation model (often a Bayesian model), the 

set of 𝑀 complete data sets are analyzed using frequentist-based methods (e.g., ML 

estimation in SEMs) as if they were complete. According to Rubin (1996), MI was designed 

to use Bayesian methods to create imputations and frequentist methods to evaluate 

procedures. The 𝑀 set of 𝑘 parameter estimates from the complete data sets 𝛉̂1, … , 𝛉̂𝑚, 

where 𝛉̂𝑖 = [θ̂𝑖1, … , θ̂𝑖𝑘] and 𝑖 = 1,… ,𝑀 are combined to form one repeated-imputation 

inference that approximately adjusts for the missing data mechanism under the model used 

to create the imputations (Zhang, 2003). For each 𝛉̂𝑖, there is an estimated variance-

covariance matrix 𝐔𝑖, resulting in a set of 𝑀 estimated variance-covariance matrices.  

 The key Bayesian motivation for MI is based on the posterior distribution of 𝛉 and 

its first two moments. The posterior distribution of 𝛉 is average complete-data posterior 

distribution of 𝛉, 

 
𝑃(𝛉|𝐗obs) = ∫𝑃(𝛉|𝐗obs, 𝐗mis)𝑃(𝐗mis|𝐗obs)𝑑𝐗mis. (2.14) 

In (2.14), the average is over the repeated imputations, which are draws from the posterior 

predictive distribution of the missing data given the observed data, 𝑃(𝐗mis|𝐗obs). A more 

intuitive interpretation of (2.14) is done from right to left, which provides the intuition 

about the JM approach to MI (van Buuren, 2012). Specifically, 𝑃(𝐗mis|𝐗obs) is used to draw 

imputations of 𝐗mis, denoted as 𝐗 mis (the imputation step, which uses an imputation 



www.manaraa.com

71 

 

model). Then, 𝑃(𝛉|𝐗obs, 𝐗 mis) can be used to calculate the parameters of interest from the 

hypothetically complete data (𝐗obs, 𝐗 mis) and make random draws (the posterior step). 

This two-step procedure is iterated until specified convergence criteria are met. Thus, 

Equation (2.14) says that the actual posterior distribution of 𝛉 is equal to the average over 

the repeated draws of 𝛉.  

From (2.14), the mean of the posterior distribution of 𝛉 is 

 𝐸(𝛉|𝐗obs) = 𝐸[𝐸(𝛉|𝐗obs, 𝐗mis)|𝐗obs], (2.15) 

which is the average of the repeated complete-data posterior means of 𝛉. Similarly, the 

variance of the posterior distribution of 𝛉 is 

 𝑉𝑎𝑟(𝛉|𝐗obs) = 𝐸[𝑉𝑎𝑟(𝛉|𝐗obs, 𝐗mis)|𝐗obs]

+ 𝑉𝑎𝑟[𝐸(𝛉|𝐗obs, 𝐗mis)|𝐗obs], 
(2.16) 

which is the sum of the average repeated complete-data variances of 𝛉 and the variance of 

the repeated complete-data posterior means of 𝛉. Equations (2.14) – (2.16) lead to Rubin’s 

(1996) so-called ‘rules’ for combining repeated imputations. The formulas are based on the 

empirical estimates of the mean and variance of the posterior distribution. Specifically, 

with 𝑀 multiple imputations the empirical estimate of the posterior mean of 𝛉 is given by  

 
𝛉̅̂𝑀 =

1

𝑀
∑𝛉̂𝑗

𝑀

𝑗=1

. (2.17) 

The empirical variance estimate of the posterior variance of 𝛉 is given by 

 𝑉𝑎𝑟 (𝛉̅̂𝑀) = 𝐔̅𝑀 + 𝐁𝑀 + 𝐁𝑀/𝑀  

= 𝐔̅𝑀 +
𝑀 + 1

𝑀
𝐁𝑀 

(2.18) 

where  
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𝐔̅𝑀 =

1

𝑀
∑𝐔𝑗

𝑀

𝑗=1

 (2.19) 

is the within imputation variability and 

 
𝐁𝑀 =

1

𝑀 − 1
∑(𝛉̂𝑗 − 𝛉̅̂𝑀)

𝑀

𝑗=1

(𝛉̂𝑗 − 𝛉̅̂𝑀)
′

 (2.20) 

is the between imputation variability. As can be seen in (2.18), the total variability of 𝛉̅̂𝑀 is 

the sum of three components: (1) 𝐔̅𝑀, sampling error (2.19), (2) 𝐁𝑀, extra variance due to 

the missing data (2.20), and (3) 𝐁𝑀/𝑀, extra simulation variance due to 𝛉̅̂𝑀 being 

estimated by finite 𝑀 (van Buuren, 2012). In practice, the effect of the latter term can be 

attenuated with larger values of 𝑀. Often, 𝑉𝑎𝑟 (𝛉̅̂𝑀) denoted as 𝐓𝑀 to denote the total 

posterior variance of 𝛉. 

In terms of inference using MI, for large 𝑀, the distribution of the multiply imputed 

estimate (𝛉 − 𝛉̅̂𝑀) can be approximated as a normal random variable with covariance 

matrix 𝐓𝑀 , which is based off the asymptotic distribution letting 𝑀 → ∞ as 

 (𝛉 − 𝛉̅̂∞)~ 𝑁(𝟎, 𝐓∞),  

where 𝐓∞ = 𝐔̅∞ + 𝐁∞ (Meng & Rubin, 1993; Wang & Robins, 1998), since the term 𝐁𝑀/𝑀 

goes to zero as 𝑀 → ∞. In practice, 𝐓 is not known a priori so it is estimated using the 

multiply imputed estimator 𝐓𝑀 , which is a function of the number of imputations, 𝑀. Rubin 

(1987, p. 114) showed that the asymptotic variance 𝐓∞ and the finite variance 𝐓𝑀 are 

related by 

 𝐓𝑀 = (1 +
γ

𝑀
)𝐓∞,  

where γ is the fraction of missing information (FMI), which is a variance ratio measure of 
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the proportion of variation that can be attributed to the missing data. FMI is defined as 

 

γ =

((
𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀
) + 2) /(𝑑𝑓 + 3)

1 + (
𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀
)

, (2.21) 

 

where 𝑑𝑓 are the finite, sample-adjusted degrees of freedom given by 

 
𝑑𝑓 =  

ϑφ

ϑ + φ
 , (2.22) 

where 

 
ϑ = (𝑀 − 1) (1 + (

𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀

)
−2

)  

and  

  
φ =

𝑛 − 𝑘 + 1

𝑛 − 𝑘 + 3
(𝑛 − 𝑘) (1 −

𝐁𝑀 + 𝐁𝑀/𝑀

𝐓𝑀
)  

and 𝑘 is the number of parameters fit to the data.  

 For finite 𝑀, confidence intervals for the 𝑗th element of 𝛉̅̂𝑀 can be constructed using 

a 𝑡-distribution as 

 𝛉̅̂𝑀,𝑗 ± 𝑡ν,1−α/2 √𝐓𝑀,𝑗 ,  

where 𝑡𝑑𝑓,1−α/2 is the quantile of the 𝑡-distribution with 𝑑𝑓 degrees of freedom (defined in 

[2.22]) corresponding to probability 1 − α/2 and 𝐓𝑀,𝑗 = 𝑉𝑎𝑟 (𝛉̅̂𝑀)
𝑗𝑗

 is the 𝑗th diagonal 

component of the estimated covariance matrix of 𝛉̅̂𝑀.  

2.3.3. Proper imputations. Imputations procedures that lead to valid statistical 

inferences are said to be proper. Although there are varying degrees of proper in terms of 

nominal confidence interval coverage, we use a less stringent type referred to as 
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confidence proper. In a missing data context, an imputation procedure is said to be 

confidence proper if for large 𝑀, three conditions hold. First, 𝛉̅̂𝑀 is an unbiased estimate of 

𝛉̂,  

 𝐸 (𝛉̅̂𝑀|𝐗) = 𝛉̂. (2.23) 

Second, 𝐔̅𝑀 is an unbiased estimate of 𝐔, 

 𝐸(𝐔̅𝑀|𝐗) = 𝐔. (2.24) 

Third, similar to (2.13), the average estimate 𝐁 of the variance due to missing data (i.e., the 

extra inferential uncertainty about 𝛉̅̂𝑀 due to missing data; van Buuren, 2012) should be at 

least as large as the variance observed in the MI estimator 𝛉̅̂𝑀, 

 𝑀 + 1

𝑀
𝐸(𝐁𝑀|𝐗) ≥ 𝑉𝑎𝑟 (𝛉̅̂𝑀). (2.25) 

Empirically, the most common way to determine if an imputation procedure is confidence 

proper is through statistical simulation. Briefly, population parameters and models are 

chosen, samples are generated based on these models, incomplete data are generated, the 

imputation procedure is implemented, estimates of the population parameters are 

calculated, and then results are averaged over iterations. Under such a simulation design, 

confidence proper imputation routines provide unbiased estimates (i.e., satisfy [2.23] and 

[2.24]) and provide nominal confidence interval coverage (i.e., satisfy [2.25]).   

2.3.4. Joint model multiple imputation. A widely used JM MI algorithm was developed 

by Schafer (1997) and follows from Rubin’s theory of MI, specifically using a Bayesian 

imputation model. As opposed to the FCS approach to MI, the JM approach explicitly 

models the joint distribution of 𝑃(𝐗, 𝐑) using a multivariate normal distribution. Compared 

to frequentist modeling, Bayesian modeling explicitly allows parameter uncertainty (or the 
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lack thereof) to be incorporated by the choice of prior distribution for 𝛉 (Song & Lee, 

2012). Often, little or no prior information is known about 𝛉 and a non-informative prior 

can be used for 𝛉. Two common choices of non-informative priors are those that are 

proportional to a constant and Jeffrey’s prior. In the former case, the prior for 𝛉 is of the 

form 

 𝑃(𝛉) ∝ 𝐶,  

where 𝐶 is a constant that does not depend on 𝛉. Under a non-informative prior of this 

type, we ‘let the data speak for itself’ and the posterior distribution takes the form 

 𝑃(𝛉|𝐗) ∝ 𝑃(𝐗|𝛉) × 𝐶 (2.26) 

In the case of (2.26), the posterior distribution is proportional to the likelihood function 

and Bayesian estimates coincide with MLEs (Gelman et al., 2013). A more theoretically 

sound non-informative prior is Jeffrey’s prior. Jeffrey’s prior uses the prior density of the 

form, 

  𝑃(𝛉) ∝ |𝐈(𝛉)|1/2, (2.27) 

where 𝐈(𝛉) is Fisher’s (expected) information matrix (see Chapter 1 for a review). Jeffreys 

(1961) argued that in the case of multiparameter distributions, the prior in (2.27) should 

be applied to each parameter separately, assuming the other parameters are known 

constants. With respect to MI, Schafer’s JM MI algorithm uses Jeffrey’s prior.  

The underlying algorithm of the JM approach to MI uses Tanner and Wong’s (1987) 

data augmentation (DA) algorithm to impute missing values based on an underlying 

multivariate normal distribution for the data. The multivariate normal density is presented 

in Definition (2.1). 
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Definition 2.1. Let  𝐱 be a 𝑝 × 1 random vector in ℛ𝑝 with mean vector 𝛍 in 𝓡𝑝and 

covariance matrix  𝚺 in ℛ𝑝×𝑝. Then 𝐱 is said to follow a multivariate normal distribution if 

for  |𝚺| > 0, 

 
𝑓(𝐱|𝛍, 𝚺) =

1

(2𝜋)𝑝/2|𝚺|1/2 
exp (−

1

2
(𝐱 − 𝛍)′𝚺−1(𝐱 − 𝛍)) .  

 

A convenient shorthand notation for Definition (2.1) is 𝐱 ~ 𝑁𝑝(𝛍, 𝚺) or simply 𝐱 ~ 𝑁(𝛍, 𝚺). 

Note, when 𝑝 = 1, the multivariate normal distribution reduces to the univariate normal 

distribution. Before introducing the JM MI algorithm in detail, we first describe some 

important results regarding partitioned matrices and properties associated with the 

multivariate normal distribution.  

 

Lemma 2.1. Let 𝚺 be a 𝑝 × 𝑝 symmetric matrix partitioned as 

 𝚺 = [
𝚺11 𝚺12
𝚺21 𝚺22

],  

where  𝚺11 is a 𝑝1 × 𝑝1 matrix, 𝚺22 is a 𝑝2 × 𝑝2 matrix, 𝚺12 is a 𝑝1 × 𝑝2 matrix, 𝚺21 = 𝚺12
′ , 

|𝚺11| > 0, and |𝚺22| > 0. Then, if  |𝚺22| ≠ 0, the determinant of  𝚺 can be expressed as 

 |𝚺| = |[
𝚺11 𝚺12
𝚺21 𝚺22

]| = |𝚺22||𝚺11 − 𝚺21𝚺11
−1𝚺12|.  

Equivalently, if  |𝚺11| ≠ 0, then the determinant of  𝚺 can be expressed as 

 |𝚺| = |[
𝚺11 𝚺12
𝚺21 𝚺22

]| = |𝚺11||𝚺22 − 𝚺12𝚺22
−1𝚺21|.  

In addition, the inverse of  𝚺 is 

 𝚺−1 = [𝚺
11 𝚺12

𝚺21 𝚺22
],  

where  



www.manaraa.com

77 

 

 𝚺11 = (𝚺11 − 𝚺12𝚺22
−1𝚺21)

−1 

𝚺22 = (𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1 

𝚺21 = −𝚺22
−1𝚺21(𝚺11 − 𝚺12𝚺22

−1𝚺21)
−1 

𝚺12 = −𝚺11
−1𝚺12(𝚺𝟐𝟐 − 𝚺21𝚺11

−1𝚺12)
−1 

 

and  𝚺11 and  𝚺22 are the Schur complements. 

Proof:  

 See Appendix A.  

 

Lemma (2.2) shows another useful form of the inverse expression along the main diagonal 

of a symmetric partitioned matrix.  

 

Lemma 2.2. Let 𝐀, 𝐁, 𝐂, and 𝐃 be matrices that conform in addition and multiplication 

where both 𝐀 and 𝐁 are square matrices with |𝐀| ≠ 0 and |𝐁| ≠ 0, then the inverse of 

(𝐀 − 𝐂𝐁𝐃)−1 is 

(𝐀 − 𝐂𝐁𝐃)−1 = 𝐀−1 + 𝐀−1𝐂(𝐁−1 − 𝐃𝐀−1𝐂)−1𝐃𝐀−1. 

Proof: 

 To prove equality, the product (𝐀 − 𝐂𝐁𝐃)(𝐀 − 𝐂𝐁𝐃)−1 should be the identity 

matrix. To show this, 

(𝐀 − 𝐂𝐁𝐃)(𝐀 − 𝐂𝐁𝐃)−1 = (𝐀 − 𝐂𝐁𝐃)(𝐀−1 + 𝐀−1𝐂(𝐁−1 −𝐃𝐀−1𝐂)−1𝐃𝐀−1) 

= (𝐀 − 𝐂𝐁𝐃)𝐀−1 + (𝐀 − 𝐂𝐁𝐃)𝐀−1𝐂(𝐁−1 − 𝐃𝐀−1𝐂)−1𝐃𝐀−1 

= 𝐈 − 𝐂𝐁𝐃𝐀−1 + (𝐂 − 𝐂𝐁𝐃𝐀−1𝐂)(𝐁−1 − 𝐃𝐀−1𝐂)−1𝐃𝐀−1 

= 𝐈 − 𝐂𝐁𝐃𝐀−1 + 𝐂𝐁(𝐁−1 − 𝐃𝐀−1𝐂)(𝐁−1 − 𝐃𝐀−1𝐂)−1𝐃𝐀−1 

= 𝐈 − 𝐂𝐁𝐃𝐀−1 + 𝐂𝐁𝐃𝐀−1 
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= 𝐈, 

which completes the proof. ∎  

 

The next Lemmas provides import results for derivations used in Schafer’s JM MI 

algorithm. Let 𝐱 be a 𝑝 × 1 normally distributed random vector with mean vector 𝛍 and 

covariance matrix 𝚺. Let 𝐱 = [𝐱1, 𝐱2]
′ be a partition with subvector lengths 𝑝1 and 𝑝2 for  𝐱1 

and 𝐱2, respectively, where 𝑝1 + 𝑝2 = 𝑝. According to the partition described, the mean 

vector 𝛍 = 𝐸(𝐱) and covariance matrix 𝚺 = 𝐶𝑜𝑣(𝐱𝑖 , 𝐱𝑗), 𝑖, 𝑗 = 1,2 can be expressed as 

 
𝛍 = [

𝐸(𝐱1)

𝐸(𝐱2)
] = [

𝛍1
𝛍2
]  

and for |𝚺11| > 𝟎 and |𝚺22| > 0, 

 
𝚺 = [

𝐶𝑜𝑣(𝐱1, 𝐱1) 𝐶𝑜𝑣(𝐱1, 𝐱2)

𝐶𝑜𝑣(𝐱2, 𝐱1) 𝐶𝑜𝑣(𝐱2, 𝐱2)
] 

= [
𝚺11 𝚺12
𝚺21 𝚺22

], 

 

where 𝛍1 is a 𝑝1 × 1 vector, 𝛍2 is a 𝑝2 × 1 vector, 𝚺11 is a 𝑝1 × 𝑝1 matrix, 𝚺22 is a 𝑝2 × 𝑝2 

matrix, 𝚺12 is a 𝑝1 × 𝑝2 matrix, and 𝚺21 = 𝚺12
′ . The first Lemma gives results of the marginal 

distributions of the partitioned multivariate normal random vector 𝐱. 

 

Lemma 2.3. The marginal distributions of  𝐱1 and 𝐱2 are normal with mean vector with 

mean vector 𝛍𝑖 , 𝑖 = 1,2, and covariance matrix  𝚺𝑖𝑖 , i = 1,2.  

Proof: 

 See Appendix A. 
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Using Lemma (2.3), we can now derive the conditional distributions of 𝐱1|𝐱2 or 

equivalently 𝐱2|𝐱1. 

 

Theorem 2.1. The conditional distribution of  𝐱𝑖 given 𝐱𝑗  is normal with mean vector 

 𝛍𝑖|𝑗 = 𝛍𝑖 + 𝚺𝑖𝑗𝚺𝑗𝑗
−1(𝐱𝑗 − 𝛍𝑗)  

and covariance matrix 

 𝚺𝑖|𝑗 = 𝚺𝑗𝑗 − 𝚺𝑗𝑖𝚺𝑖𝑖
−1𝚺𝑖𝑗.  

Proof:  

 See Appendix A. 

 

For a multivariate normal distribution based on a sample of 𝑛 independent 

observations, the likelihood function is given by 

𝐿(𝛍, 𝚺|𝐗) = −
𝑝

2
log(2𝜋) −

𝑛

2
log|𝚺| −

1

2
∑(𝐱𝑖 − 𝛍)′𝚺−1(𝐱𝑖 − 𝛍)

𝑛

𝑖=1

 

𝐿(𝛍, 𝚺|𝐗) ∝ −
𝑛

2
log|𝚺| −

1

2
∑(𝐱𝑖 − 𝛍)′𝚺−1(𝐱𝑖 − 𝛍)

𝑛

𝑖=1

 

𝐿(𝛍, 𝚺|𝐗) = −
𝑛

2
log|𝚺| −

1

2
tr [𝚺−1 (∑(𝐱𝑖 − 𝛍)(𝐱𝑖 − 𝛍)′

𝑛

𝑖=1

)]. 

The maximum likelihood estimators of 𝛍 and 𝚺 are obtained by differentiating 𝐿(𝛍, 𝚺|𝐗). 

First, to calculate 
𝜕

𝜕𝛍
𝐿(𝛍, 𝚺|𝐗) (Press, 1972) we treat 𝚺 as a constant,  

𝜕

𝜕𝛍
𝐿(𝛍, 𝚺|𝐗) =

𝜕

𝜕𝛍
[−

𝑛

2
log|𝚺| −

1

2
∑(𝐱𝑖 − 𝛍)′𝚺−1(𝐱𝑖 − 𝛍)

𝑛

𝑖=1

] 
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= −
1

2
∑

𝜕

𝜕𝛍
[𝐱𝑖

′𝚺−1𝐱𝑖 − 2𝛍′𝚺−1𝐱𝑖 + 𝛍′𝚺−1𝛍]

𝑛

𝑖=1

 

= −
1

2
∑[−2𝚺−1𝐱𝑖 + 2𝚺−1𝛍]

𝑛

𝑖=1

 

= 𝚺−1 [∑𝐱𝑖 −

𝑛

𝑖=1

𝑛𝛍]. 

Solving 𝚺−1[∑ 𝐱𝑖 −
𝑛
𝑖= 𝑛𝛍] = 𝟎, we easily see that the ML estimator 𝛍̂MLE of 𝛍 is 

 
𝛍̂MLE = 𝑛−1∑𝐱𝑖

𝑛

𝑖=1

,  

which is just the sample mean vector 𝐱̅ = [𝐱̅1, … , 𝐱̅𝑝]
′
. Next, to calculate 

𝜕

𝜕𝚺
𝐿(𝛍, 𝚺|𝐱) 

(Magnus & Neudecker, 1999; Wand, 2002) we evaluate 𝐿(𝛍, 𝚺|𝐗) at the MLE of 𝛍̂MLE, 

𝜕

𝜕𝚺
𝐿(𝛍 = 𝛍̂MLE, 𝚺|𝐗) =

𝜕

𝜕𝚺
[−

𝑛

2
log|𝚺| −

1

2
tr [𝚺−1 (∑(𝐱𝑖 − 𝛍̂MLE)(𝐱𝑖 − 𝛍̂MLE)

′

𝑛

𝑖=1

)]] 

= −
𝑛

2
𝚺−1 +

1

2
𝚺−1  ∑(𝐱𝑖 − 𝛍̂MLE)(𝐱𝑖 − 𝛍̂MLE)

′

𝑛

𝑖=1

𝚺−1. 

Solving −
𝑛

2
𝚺−1 +

1

2
𝚺−1  ∑ (𝐱𝑖 − 𝛍̂MLE)(𝐱𝑖 − 𝛍̂MLE)

′𝑛
𝑖=1 𝚺−1 = 𝟎, we obtain the ML estimator 

𝚺̂MLE of 𝚺 as 

 
𝚺̂MLE = 𝑛−1∑(𝐱𝑖 − 𝛍̂MLE)(𝐱𝑖 − 𝛍̂MLE)

′

𝑛

𝑖=1

,  

which is the (biased) sample covariance matrix 𝐒. Technically, a more formal treatment of 

maximum likelihood estimators would check the second derivative conditions to ensure 

that global maximum estimators are obtained (see Press, 1972 for a more detailed 

discussion).  
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An alternative form of the multivariate normal likelihood can be constructed by 

adding and subtracting the sample mean to kernel function in the exponent (Johnson & 

Wischern, 2001) as ∑ (𝐱𝑖 + 𝐱̅ − 𝐱̅ − 𝛍)(𝐱𝑖 + 𝐱̅ − 𝐱̅ − 𝛍)′𝑛
𝑖=1  and expanding the product as 

∑(𝐱𝑖 − 𝐱̅)(𝐱𝑖 − 𝐱̅)′
𝑛

𝑖=1

+ 2(𝐱̅ − 𝛍)′∑(𝐱𝑖 − 𝐱̅)

𝑛

𝑖=1

+∑(𝐱̅ − 𝛍)(𝐱̅ − 𝛍)′
𝑛

𝑖=1

. (2.28) 

Here, the middle term in (2.28) goes to zero and the last term is constant for all 𝑖 = 1,… , 𝑛. 

Therefore, (2.28) becomes 

 
∑(𝐱𝑖 − 𝐱̅)(𝐱𝑖 − 𝐱̅)′
𝑛

𝑖=1

+ 𝑛(𝐱̅ − 𝛍)(𝐱̅ − 𝛍)′  

or equivalently, 

 𝑛𝐒 + 𝑛(𝐱̅ − 𝛍)(𝐱̅ − 𝛍)′,  

where 𝐒 = 𝑛−1∑ (𝐱𝑖 − 𝐱̅)(𝐱𝑖 − 𝐱̅)′𝑛
𝑖=1  is the sample covariance matrix. Rewriting 𝐿(𝛍, 𝚺|𝐗), 

the likelihood becomes 

𝐿(𝛍, 𝚺|𝐗) = |𝚺|−𝑛/2exp {−
1

2
tr[𝚺−1(𝑛𝐒 + 𝑛(𝐱̅ − 𝛍)(𝐱̅ − 𝛍)′)]} 

= |𝚺|−𝑛/2exp {−
𝑛

2
tr[𝚺−1𝐒]} × exp {−

𝑛

2
tr[𝚺−1(𝐱̅ − 𝛍)(𝐱̅ − 𝛍)′]} 

= |𝚺|−𝑛/2exp {−
𝑛

2
tr[𝚺−1𝐒]} × exp {−

𝑛

2
(𝐱̅ − 𝛍)′𝚺−1(𝐱̅ − 𝛍)}. 

 To calculate the posterior distribution of (𝛍, 𝚺) given the data 𝐱, Schafer (1997) uses 

Jeffrey’s prior for 𝑃(𝛍, 𝚺) 

 𝑃(𝛍, 𝚺) = |𝚺|−(𝑝+1)/2, (2.29) 

which is the limiting form of the conjugate normal-inverted Wishart density. If we assume 

that 𝑃(𝛍|𝚺) ~ 𝑁(𝛍0, τ
−1𝚺) where 𝛍0 ∈ ℛ𝑝 and τ > 0 and 𝑃(𝚺) ~ 𝐼𝑊(𝑚,𝚲), where 𝐼𝑊 

denotes inverted-Wishart and 𝑚 ≥ 𝑝 and 𝚲 > 𝟎, then the normal-IW density for (𝛍, 𝚺) is 
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proportional to  

 
𝑃(𝛍, 𝚺) ∝ |𝚺|−(𝑚+𝑝+2)/2exp {−

1

2
tr[𝚲−1𝚺−1]}

× exp {−
τ

2
(𝛍 − 𝛍0)

′𝚺−1(𝛍 − 𝛍0)}. 

(2.30) 

Then, the limiting form of (2.30) leads to Jeffrey’s prior in (2.29) as (τ,𝑚, 𝚲−1) → (0,−1, 𝟎) 

(Timm, 2002). Combing the reparametrized likelihood with the prior in (2.29), the 

posterior distribution of (𝛍, 𝚺) takes the form 

𝑃(𝛍, 𝚺|𝐗) ∝ 𝐿(𝛍, 𝚺|𝐗)𝑃(𝛍, 𝚺) 

                 = exp {−
𝑛

2
tr[𝚺−1𝐒]} exp {−

𝑛

2
(𝐱̅ − 𝛍)′𝚺−1(𝐱̅ − 𝛍)} × |𝚺|−(𝑝+1)/2|𝚺|−𝑛/2 

= |𝚺|−(𝑛+𝑝+1)/2exp {−
𝑛

2
tr[𝚺−1𝐒]} × exp {−

𝑛

2
(𝐱̅ − 𝛍)′𝚺−1(𝐱̅ − 𝛍)}. 

Here, the posterior distribution factors into the product of two distributions, 𝑃(𝛍, 𝚺|𝐗) ∝

𝑃(𝚺|𝐗)𝑃(𝛍|𝚺, 𝐗) where 𝑃(𝚺|𝐗) ~ 𝐼𝑊(𝑛 − 1, (𝑛𝐒)−1) and 𝑃(𝛍|𝚺, 𝐗) ~ 𝑁(𝐱̅, 𝑛−1𝚺).  

 The DA algorithm is the stochastic analog of the expectation-maximization (EM) 

algorithm (see Dempster, Laird, & Rubin, 1977), iterating between imputation steps (I-

step) and posterior steps (P-step) using a Gibbs-sampler routine. Specifically, the I-step 

simulates  

 𝐱 mis
(𝑡+1)

= 𝑃(𝐱mis|𝐱obs, 𝛉 
(𝑡)),   

which are independent simulations of random normal vectors for each row of the data 

matrix, with means and covariances given by the multivariate normal conditional 

distribution of 𝐱mis on 𝐱obs and 𝛉 (𝑡) (see Theorem [2.1]). The P-step simulates 

 𝛉 (𝑡+1) = 𝑃(𝛉|𝐱obs, 𝐱 mis
(𝑡+1)

).   
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which are draws from the normal-inverted Wishart distribution (i.e., the distribution of the 

parameters conditioned on the ‘pseudo’-complete data). The I- and P-steps alternate for 

thousands of iterations until convergence to the stationary posterior distribution.  

Convergence as defined here is in the context of Markov Chains. In particular, the 

output of the DA is a sequence {(𝛉(𝑡), 𝐱mis
(𝑡) ): 𝑡 = 0,1,2, … }, where at iteration 0,  𝛉(𝑡) is 

initialized by using only observed data estimates based on listwise/pairwise deletion or the 

EM algorithm. The goal of the DA algorithm is to simulate draws from the distribution 

𝑃(𝛉, 𝐱mis|𝐱obs). For the sequence to have converged, it is sufficient for the distribution of 

𝛉(𝑡) to have converged to 𝑃(𝛉|𝐱obs), because 𝛉(𝑡) ~ 𝑃(𝛉|𝐱obs) implies that 

(𝛉(𝑠+𝑡), 𝐱mis
(𝑠+𝑡)) ~ 𝑃(𝛉, 𝐱mis|𝐱obs) for all 𝑠 > 0. Equivalently, it is sufficient for the 

distribution of 𝐱mis
(𝑡)  to have converged to 𝑃(𝐱mis|𝐱obs). Also, convergence by 𝑡 iterations 

means that 𝛉(𝑠) and  𝐱mis
(𝑠)  are independent of 𝛉(𝑠+𝑡) and  𝐱mis

(𝑠+𝑡). In practice, convergence is 

empirically monitored through the successive values of 𝛉 rather than successive values of 

𝐱mis because the latter is usually in high dimension.  

Schafer’s JM MI algorithm requires repeated applications of the conditional 

distributions for the multivariate normal distribution. To simplify the algorithm, a device 

known as the sweep operator is used. The sweep operator is widely used in linear model 

computations and provides a useful means of computing MLEs in multivariate missing data 

problems (Goodnight, 1979). Suppose that 𝐆 is a symmetric 𝑝 × 𝑝 matrix with elements 𝑔𝑖𝑗. 

The sweep operator SWP[𝑘] operates on 𝐆 by replacing it with another 𝑝 × 𝑝 symmetric 

matrix 𝐇, 

 𝐇 = SWP[𝑘]𝐆,   
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where the elements of 𝐇 are given by 

ℎ𝑘𝑘 = −
1

𝑔𝑘𝑘
 

ℎ𝑗𝑘 = ℎ𝑘𝑗 =
𝑔𝑗𝑘

𝑔𝑘𝑘
  for 𝑗 ≠ 𝑘 

ℎ𝑗𝑙 = ℎ𝑙𝑗 = 𝑔𝑗𝑙 −
𝑔𝑗𝑘𝑔𝑘𝑙

𝑔𝑘𝑘
  for 𝑗 ≠ 𝑘 and 𝑙 ≠ 𝑘. 

Algorithm (2.2) presents the (forward) sweep operator.  After applying Algorithm (2.2) on 

the 𝑘th position on a matrix, the matrix is said to be swept on position 𝑘. To return a swept 

matrix to its original form, we define a reverse sweep operator denoted by 

 𝐇 = RSWP[𝑘]𝐆,   

 
Algorithm 2.2. Sweep Matrix on Position 𝑘 
Requires: 𝐆𝑝×𝑝 symmetric matrix 
  1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐇 ← 𝟎𝑝×𝑝 

  2. ℎ𝑘𝑘 ← −1/𝑔𝑘𝑘 
  3. for 𝑗 ← 1 to 𝑝 and 𝑗 ≠ 𝑘 do 
  4. ℎ𝑗𝑘 = ℎ𝑘𝑗 ← −𝑔𝑗𝑘ℎ𝑘𝑘 

  5. end for 
  6. for 𝑗 ← 1 to 𝑝  and 𝑗 ≠ 𝑘 do 
  7. for 𝑙 ← 1 to p and 𝑙 ≠ 𝑘 do 
  8. ℎ𝑗𝑙 = ℎ𝑙𝑗 ← 𝑔𝑗𝑙 − 𝑔𝑘𝑙ℎ𝑗𝑘   

  9. end for 
10. end for 

 

where the elements of 𝐇 are similar to those given by the (forward) sweep operator,  

ℎ𝑘𝑘 = −
1

𝑔𝑘𝑘
 

ℎ𝑗𝑘 = ℎ𝑘𝑗 = −
𝑔𝑗𝑘

𝑔𝑘𝑘
  for 𝑗 ≠ 𝑘 

ℎ𝑗𝑙 = ℎ𝑙𝑗 = 𝑔𝑗𝑙 −
𝑔𝑗𝑘𝑔𝑘𝑙

𝑔𝑘𝑘
  for 𝑗 ≠ 𝑘 and 𝑙 ≠ 𝑘, 
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with the difference in negating the calculation of ℎ𝑗𝑘 = ℎ𝑘𝑗 . For computational convenience, 

the rows of matrix 𝐗 should be sorted, from minimum missingness to maximum 

missingness, into 𝑆 unique missingness patterns. Figure (2.3) displays one desired form of 

sorting based on missingness.  

Similar to the matrix of binary indicators defined in (2.1), let 𝐑 be an 𝑠 × 𝑝 matrix of 

binary indicators with elements given by   

 
𝑟𝑠𝑗 = {

1, if 𝐱𝑗  is observed in pattern 𝑠

0, if 𝐱𝑗  is missing in pattern 𝑠.
  

For each missingness pattern 𝑠, let 𝒪(𝑠) denote the subset of column labels {1,2, … , 𝑝} 

corresponding to variables that are observed, 

 Variables 
Patterns 𝑋1 𝑋2 𝑋3 ∙∙∙ 𝑋𝑝 

𝑠1 1 1 1  1 
𝑠2 0 1 1  1 
𝑠3 1 0 1  1 
∙ ∙ ∙ ∙  ∙ 
∙ ∙ ∙ ∙  ∙ 
∙ ∙ ∙ ∙  ∙ 
𝑠𝑆 1 0 0  0 

 

𝐹𝑖𝑔𝑢𝑟𝑒 2.3. Matrix of missingness patterns for 𝐗𝑛×𝑝, where 1 denotes an observed value 

and 0 denotes a missing value. Each row of 𝐗𝑛×𝑝 is grouped into a unique missing data 

pattern 𝑠 = 1,2… , 𝑆.  

 

 𝒪(𝑠) = {𝑗: 𝑟𝑠𝑗 = 1}.  

 Similarly, let ℳ(𝑠) denote the subsets of columns {1,2, … , 𝑝} that are missing, 

 𝑀(𝑠) = {𝑗: 𝑟𝑠𝑗 = 0}.  
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Lastly, let 𝒾(𝑠) denote the subset of rows {1,2, … , 𝑛} corresponding to 𝐗 that are in missing 

pattern 𝑠.  

The most common way to simulate multivariate normal random vectors within the 

I-step is using the Cholesky decomposition on the square submatrices of SWP[𝒪(𝑠)]𝛉 

(Schafer, 1997). The Cholesky decomposition is a numerically efficient technique used to 

decompose a matrix into the product of a lower triangular matrix and its conjugate 

transpose (Gentle, 1998). The complete-data sufficient statistics for the multivariate 

normal distribution are given by a vector of column sums 

 𝐓1 = [∑ 𝑥𝑖1,
𝑛
𝑖=1 ∑ 𝑥𝑖2,

𝑛
𝑖=1 … ,∑ 𝑥𝑖𝑝,

𝑛
𝑖=1 ]

′
   

and a matrix of sums of squares and cross-products 

 

𝐓2 =

[
 
 
 
 
∑ 𝑥𝑖1

2𝑛
𝑖=1 ∑ 𝑥𝑖1𝑥𝑖2

𝑛
𝑖=1 … ∑ 𝑥𝑖1𝑥𝑖𝑝

𝑛
𝑖=1

∑ 𝑥𝑖2𝑥𝑖1
𝑛
𝑖=1 ∑ 𝑥𝑖2

2𝑛
𝑖=1 … ∑ 𝑥𝑖2𝑥𝑖𝑝

𝑛
𝑖=1

⋮ ⋮ ⋱ ⋮
∑ 𝑥𝑖𝑝𝑥𝑖1
𝑛
𝑖=1 ∑ 𝑥𝑖𝑝𝑥𝑖2

𝑛
𝑖=1 … ∑ 𝑥𝑖𝑝

2𝑛
𝑖=1 ]

 
 
 
 

.   

We can arrange the sufficient statistics into a (𝑝 + 1) × (𝑝 + 1) matrix 𝐓 as 

 
𝐓 = [

𝑛 𝐓1
′

𝐓1 𝐓2
].   

Using the sweep operator, we can calculate the MLEs as  

𝛉̂MLE = SWP[0]𝑛−1𝐓 

= [
−1 𝐓1

′/𝑛

𝐓1/𝑛 𝐓2 − (𝐓1𝐓1
′)/𝑛

] 

= [
−1 𝛍̂MLE

′

𝛍̂MLE 𝚺̂MLE

]. 

For missing data, 𝐓 is partitioned into observed and missing sufficient statistics such that 

𝐓 = 𝐓obs + 𝐓mis for each missingness pattern. 𝐓obs is a matrix that contains the sufficient 

statistics for only fully observed variables and places zeros in rows and columns 
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corresponding to missing variables, whereas, 𝐓mis contains the complement of 𝐓obs. As 

such, 

 
𝐓obs =∑𝐓obs(𝑠)

𝑆

𝑠=1

  

and  

 
𝐓mis =∑𝐓mis(𝑠)

𝑆

𝑠=1

.  

The JM MI algorithm is presented in Algorithm (2.3). 

2.3.5. Fully conditional specification multiple imputation. In practice, it is often 

difficult to specify a realistic joint model 𝑃(𝐗,𝐑) that incorporates the model  

for generating imputations and the substantive model for which the data was  

sampled. As such, the fully conditional specification (FCS) approach to missing data  

imputes missing data on a variable-by-variable basis. That is, as opposed to assuming the 

joint distribution 𝑃(𝐗, 𝐑|𝛉) follows a multivariate normal distribution as in the JM 

approach, the FCS approach specifies this multivariate density as a series of univariate 

conditional densities (Gelman & Speed, 1993) of the form 

 𝑃(𝐱𝑗|𝐗−𝑗, 𝐑, 𝛉), (2.31) 

where 𝐱𝑗  is the 𝑗th variable of 𝐗 and 𝐗−𝑗 = [𝐱1, … , 𝐱𝑗−1, 𝐱𝑗+1, … , 𝐱𝑝] is collection of the 𝑝 − 1 

variables in 𝐗 excluding the 𝑗th variable 𝐱𝑗  (van Buuren, 2007). The conditional densities in 

(2.31) are the form of univariate regression models in which 𝐱𝑗  is regressed on all other 

variables 𝐗.  

The multiple imputation by chained equations (MICE) algorithm is one popular 

algorithm that implements FCS MI (see Algorithm [2.4]). MICE first loops 
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Algorithm 2.3. Joint Multivariate Normal Model Multiple Imputation 
Require: 𝐗𝑛×𝑝 matrix with rows sorted by 𝑆 missingness patterns 
  1: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝛉0 ← (𝛍0, 𝚺0) 
  2: 𝐓 ← 𝐓obs 
  3: for 𝑡 ← 1 to 𝑇 
  4: for 𝑠 ← 1 to 𝑆 do 
  5: for 𝑗 ← 1 to 𝑝 do 
  6: if 𝑟𝑠𝑗 = 1 and 𝛉𝑗𝑗 > 0 

  7: 𝛉 ← SWP[𝑗]𝛉 
  8: else  
  9: 𝛉 ← RSWP[𝑗]𝛉 
10: end for 
11: 𝐂 ← Choleskyℳ(s)𝛉 

12: for 𝑖 ∈ 𝒾(𝑠) do 
13: for 𝑗 ∈ ℳ(𝑠) do 
14: 𝐱𝑖𝑗 ← 𝛉0𝑗 

15: for 𝑘 ∈ 𝒪(𝑠) do 
16: 𝐱𝑖𝑗 ← 𝐱𝑖𝑗 + 𝛉𝑘𝑗𝐱𝑖𝑘 

17: end for 
18: 𝐳 𝑗 ← draw from 𝑁(0,1) 

19: for 𝑘 ∈ ℳ(𝑠) and 𝑘 ≤ 𝑗 do 
20: 𝐱𝑖𝑗 ← 𝐱𝑖𝑗 + 𝐂𝑘𝑗𝐳𝑘 

21: end for 
22: 𝐓0𝑗 ← 𝐓0𝑗 + 𝐱𝑖𝑗  

23: for 𝑘 ∈ 𝒪(𝑠) do 
24: 𝐓𝑘𝑗 ← 𝐓𝑘𝑗 + 𝐱𝑖𝑗𝐱𝑖𝑘 

25: end for 
26: for 𝑘 ∈ ℳ(𝑠) and 𝑘 ≤ 𝑗 do 
27: 𝐓𝑘𝑗 ← 𝐓𝑘𝑗 + 𝐱𝑖𝑗𝐱𝑖𝑘 

28: end for 
29: end for 
30: end for 
31: end for 
32: 𝛉 𝑡 = (𝛍𝑡, 𝚺𝑡) ← draw from 𝑝(𝛉|𝐱obs, 𝐱mis

𝑡 ) 
33: end for 

 

through each of the 𝑝 variables in 𝐗 and if missingness is found on 𝐱𝑗  (Line 3), then the 

missing values of 𝐱𝑗  (𝐱𝒾mis(𝑗)
) are replaced by random draws from the observed values of 𝐱𝑗  

(𝐱𝒾obs(𝑗)) (Line 4). Next, the parameters of interest 𝛉𝑗  are drawn from the posterior 

distribution of the current values of 𝛉𝑗
(𝑡) at the 𝑡th iteration conditional on the observed  
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Algorithm 2.4. Multivariate Imputation by Chained Equations Multiple Imputation  
Require: 𝐗𝑛×𝑝 matrix with missing values 
  1: for 𝑡 ← 1 to 𝑇 do 
  2: for 𝑗 ← 1 to 𝑝 do 
  3: 𝒾obs ← {indices observed data in 𝐱𝑗} 

  4: 𝒾mis ← {indices missing data in 𝐱𝑗} 

  5: if 𝐱𝒾mis(𝑗)
= ∅ 

  6: pass 
  7: else 
  8: if any(𝐗𝒾obs(−𝑗)) missing 

  9: 𝐗𝒾obs(−𝑗) ← random draws from observed data in 𝐗(−𝑗) 

10: end if 
11: 𝛉 𝑗

(𝑡)  ← draw from 𝑃 (𝛉𝑗
(𝑡)|𝐱𝒾obs(𝑗), 𝐗

 
𝒾obs(−𝑗)
(𝑡) ) 

12: 𝐱 𝒾mis(𝑗)
(𝑡) ← draw from 𝑃 (𝐱𝒾mis(𝑗)

|𝐱𝒾obs(𝑗), 𝐗
 
𝒾obs(−𝑗)
(𝑡) , 𝛉 𝑗

(𝑡)) 

13: end if 
14: end for 
15: end for 

 

values of 𝐱𝑗  (𝐱𝒾obs(𝑗)), and the observed and imputed values in 𝐗−𝑗 (𝐗 (−𝑗)
(𝑡) ) (lines 6), where 

𝐗 (−𝑗)
(𝑡) = [𝐱 1

(𝑡), … , 𝐱 𝑗−1
(𝑡) , 𝐱 𝑗+1

(𝑡−1), … , 𝐱 𝑝
(𝑡−1)]. Finally, imputations for missing values in 𝐱𝑗   𝐱𝒾mis(𝑗)

 

are drawn using the distribution of 𝐱𝒾mis(𝑗)
 conditional on the observed values of 𝐱𝒾obs(𝑗), 

the observed and imputed values 𝐗 (−𝑗)
(𝑡) , and the current parameter draws 𝛉 𝑗

(𝑡) (Line 7). As 

described above, the MICE algorithm can be viewed as a Gibbs sampler used to obtain the 

posterior distribution of 𝛉 by sampling iteratively from a series of conditional distributions, 

where the parameters are treated as specific to their respective conditional densities (Azur, 

Stuart, Frangakis, & Leaf, 2011). van Buuren and Groothuis-Oudshoorn (2011) note that 

empirically, MICE converges after approximately 5-10 iterations. For continuous-valued 

variables that are normally distributed, a Bayesian linear regression with non-informative 

priors can be used to impute missing values (see Algorithm [2.5]). Similarly, for binary-

valued variables, an approximate Bayesian logistic regression with non-informative priors 
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can be used to impute missing values (see Algorithm [2.6]). See van Buuren (2012) for a 

description of these algorithms. 

2.3.6. Model compatibility. One of the widely cited criticisms against FCS is the issue 

of compatible conditional models. In the simplest case, two conditional densities 𝑓(𝑥|𝑦) 

and 𝑔(𝑦|𝑥) are compatible if their density ratio 𝑓(𝑥|𝑦)/𝑔(𝑦|𝑥) factorizes into 𝑢(𝑥)𝑣(𝑦) for 

some integrable functions 𝑢 and 𝑣 (Arnold & Press, 1989; Besag, 1974). Recently, the 

convergence properties of FCS under compatible conditionals have begun to be understood 

(Liu, Gelman, Hill, Su, & Kropko, 2014) and several approaches have been proposed to 

determine the amount of compatibility (Arnold, Castillo, & Sarabia, 1999; Chen, 2010). 

However, in FCS MI the ‘true’ joint distribution is not known and of scientific interest. 

When incompatible conditionals are used, FCS MI is not guaranteed to converge to the true 

underlying multivariate density of 𝑃(𝐗, 𝐑|𝛉) (Liu et al., 2014). However, research has 

shown that clearly incompatible conditionals generally have little impact on the empirical 

performance of the FCS MI algorithm (van Buuren, Brands, Groothuis-Oudshoorn, & Rubin, 

2006), and may lead to consistent estimates when other technical conditions are met given 

in Liu et al. (2014). Similarly, Gelman (2004) argues that having a joint distribution in the 

imputation is less important than incorporating unique effects in the conditional 

imputation models (e.g., nonlinear effects).  

2.3.7. Comparison between JM and FCS. The goal of both JM and FCS MI is to obtain 

confidence proper estimates in the presence of missing data, where JM MI models the 

observed and missing data using a multivariate normal distribution and FCS MI models the 

observed and missing data using a series of conditional densities. In cases with continuous 

and normally distributed data, studies have consistently shown that FCS MI using linear  
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Algorithm 2.5. MICE Bayesian Linear Regression Imputation 
Require: 𝐗𝑛×𝑝 matrix with missing values only in 𝐱𝑗  
  1: for 𝑡 ← 1 to 𝑇 do 
  2: 𝒾obs ← {indices observed data in 𝐱𝑗} 

  3: 𝒾mis ← {indices missing data in 𝐱𝑗} 

  5: if any(𝐗𝒾obs(−𝑗)) missing 

  6: 𝐗𝒾obs(−𝑗) ← random draws from observed data in 𝐗(−𝑗) 

  7: end if 
  8: 𝐕 ← (𝐗𝒾obs(−𝑗)

′ 𝐗𝒾obs(−𝑗) + diag(𝐗𝒾obs(−𝑗)
′ 𝐗𝒾obs(−𝑗))κ)

−1
 

  9: 𝛃̂ ← 𝐕𝐗𝒾obs(−𝑗)
′ 𝐱𝒾obs(𝑗) 

10: 𝑔 ← draw from χ𝑑𝑓=𝑛1−(𝑝−1)
2  

11: σ 2(𝑡) ← (𝐱𝒾obs(𝑗) − 𝐗𝒾obs(−𝑗)
′ 𝛃̂)

′
(𝐱𝒾obs(𝑗) − 𝐗𝒾obs(−j)

′ 𝛃̂)/𝑔  

12: 𝐳 1 ~ (𝑝 − 1) independent draws from 𝑁(0,1) 
13: 𝐕1/2 ← Cholesky(𝐕) 
14: 𝛃 (𝑡) ← 𝛃̂ + σ (𝑡)𝐕1/2𝐳 1 
15: 𝐳 2 ~ 𝑛2 independent draws from 𝑁(0,1) 
16: 𝐱 𝒾mis(𝑗)

(𝑡) ← 𝐗𝒾mis(−𝑗)
𝛃 (𝑡) + 𝐳 2σ 

(𝑡) 

17: end for 
 

 

Algorithm 2.6. MICE Approximate Bayesian Logistic Regression Imputation 
Require: 𝐗𝑛×𝑝 matrix with missing values only in 𝐱𝑗  
  1: for 𝑡 ← 1 to 𝑇 do 
  2: 𝒾obs ← {indices observed data in 𝐱𝑗} 

  3: 𝒾mis ← {indices missing data in 𝐱𝑗} 

  4: if any(𝐗𝒾obs(−𝑗)) missing 

  5: 𝐗𝒾obs(−𝑗) ← random draws from observed data in 𝐗(−𝑗) 

  6: end if 
  7: 𝛃̂ ← arg min

𝛃
𝐿(𝛃|𝐱𝒾obs(𝑗),𝐗𝒾obs(−𝑗))) 

  8: 𝐕 ← Cov(𝛃̂) 

  9: 𝐕1/2 ← Cholesky(𝐕) 
10: 𝛃 (𝑡) ← 𝛃̂ + 𝐕1/2𝐳 1 
11: 

𝐩 ← 𝑛2 predicted probabilites (1 + exp(−𝐗𝒾mis(−𝑗)
𝛃 (𝑡)))

−1

  

12: 𝐮 ← 𝑛2 independent draws from 𝑈(0,1) 
13: 

𝐱 𝒾mis(𝑗)
(𝑡) = {

1, 𝑢𝑖 ≥ 𝑝 𝑖
0, 𝑢𝑖 < 𝑝 𝑖

   𝑖 = 1,… , 𝑛2 

14: end for 
 

regression models with constant variance and the JM approach yield parameter estimates 
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and standard errors that are approximately similar (Karangwa, 2013; Kropko, Goodrich, 

Gelman, & Hill 2014; Raghunathan, Lepkowski, Van Hoewyk & Solenberger, 2001). Despite 

the differences in implementation, in a limited number of simple cases (e.g., the joint model 

is multivariate normal and the conditional models are all linear regression modes with 

constant variance) described in (Hughes, White, Seaman, Carpenter, Tilling, & Sterne, 

2014) and (Liu et al., 2014), theoretically the JM and FCS approach are equivalent. Thus, 

the results that FCS MI using linear regression models with constant variance and JM 

produce similar parameter estimates and standard errors in the case of continuous, 

normally distributed data are intuitive.  

In more common implementations of FCS MI (e.g., using nonlinear or nonparametric 

regression models for imputation), the theoretical connections between JM and FCS do not 

hold (Hughes et al., 2014). In such cases, the empirical research has been mixed concerning 

which method is better for imputing MAR data with different variable types (e.g., binary, 

ordered categorical, unordered categorical). For instance, in the case of imputing ordered 

categorical data, Finch (2010) and Lee and Carlin (2010) found that compared to FCS MI, 

JM MI generally resulted in less biased regression parameter estimates and lower standard 

errors. Likewise, other research has shown that JM performs slightly better in terms of 

regression parameter bias and standard errors than FCS for imputing binary variables (Lee 

& Carlin, 2010) and imputing unordered categorical variables (Karangwa, Kotze, & 

Blignaut, in press). On the contrary, in a more comprehensive study comparing the 

performance of JM and FCS for imputing missing data on continuous, binary, ordered 

categorical, and unordered categorical variables, Kropko et al. (2014) found that FCS MI 

outperformed JM MI in terms of regression coefficients’ accuracy and standard errors.   



www.manaraa.com

93 

 

Compared to the JM MI, one important difference is that under FCS no information 

about 𝐱mis(𝑗) is used to draw 𝛉𝑗 . In simpler terms, the FCS algorithm is a concatenation of 

univariate regression procedures applied to the cases with complete 𝐱obs(𝑗) and deviates 

from MCMC theory at this point. A consequence of specifying the sampler as a series of 

independent conditional densities is a faster rate of convergence (around 5-10 iterations) 

compared to JM MI, which often requires hundreds to thousands of iterations (Schafer, 

1997). Convergence in this context refers to the stability of regression coefficients in the 

presence of missing data, and not convergence to a ‘true’ stationary posterior distribution. 

The independence specification is also a theoretical weakness of FCS in that the conditional 

densities are usually not derived from a ‘true’ joint model, so the Gibbs sampler routine is 

not guaranteed to converge to a ‘true’ posterior distribution (which is often unknown in MI 

contexts).  

2.3.8. Imputation with nonlinear effects. Despite the mixed empirical performance 

potential for incompatible conditional models, the FCS framework for MI easily allows the 

specification of nonlinear effects such as interactions in an imputation model. The JM MI 

framework also allows for imputing nonlinear effects if the nonlinear effects are first 

created and then the imputation routine is applied, this method is considerably limited 

when the assumption of multivariate normality is not reasonable. Regardless of the MI 

framework, for conditional indirect effects, if the interaction effects are ignored in the 

imputation models, then estimation and inference for conditional indirect effects are likely 

to be biased (Allison, 2003). For such cases, there are two scenarios in which nonlinearities 

can be modeled in an imputation procedure. First, an interaction variable may be explicitly 

imputed. Consider the linear model, 
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 𝑌 = β0 + β1𝑋1 + β2𝑋2 + β3𝐼𝑋1𝑋2 + ζ𝑌, (2.32) 

where 𝐼𝑋1𝑋2 = 𝑋1𝑋2 is the interaction between 𝑋1 and 𝑋2 and 𝑋2 contains missing data and 

ζ𝑌 follows a standard normal error distribution. Von Hippel (2009) describes two common 

approaches to imputing interactions. The first method is called impute then transform 

(also called passive imputation [PI]; this is the default procedure in MICE). Here, to impute 

an interaction term, first impute the main effects with missing values (impute), then 

manually create the interaction term (transform), and iterate until all missing interactions 

are imputed. Applied to the model in (2.32), 𝑋mis(2) will be imputed first to obtain 𝑋 2, and 

the interaction term will be defined as 𝐼𝑋1𝑋 2 = 𝑋1𝑋 2.  

In the second method, called transform then impute, to impute an interaction term, 

the interaction variable is created and treated as another variable (transform), and an 

imputation model is used (impute, e.g., using a JM or FCS approach). This method is often 

called the just another variable (JAV) method.  

Applied to the model in (2.32), similar to the impute then transform method, 𝑋mis(2) could 

be imputed first to obtain 𝑋 2. However, now an imputation model 𝐼𝑋1𝑋 2 = 𝑋1𝑋 2 will be 

specified to impute the missing values on this interaction variable (treating it as just 

another variable). The imputation order, or visit sequence in MICE (van Buuren & 

Groothuis-Oudshoorn, 2011), can be specified in any order. This latter example 

demonstrates an FCS approach to imputation. However, a JM approach could be used 

where the interaction variable is first created, then a joint imputation model (i.e., 

multivariate normal) is specified for all the variables as in Enders et al. (2014).  

With regards to the two methods above for imputing interaction terms in linear 

regression models, von Hippel (2009) found that the PI method produced biased 
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regression estimates and incorrect standard errors. However, the JAV method produced 

inaccurate standard errors but unbiased regression coefficients. Seaman et al. (2012) 

reported slightly different results to that of von Hippel (2009). Specifically, Seaman et al. 

(2012) found that compared to PI, JAV gives consistent estimation, but only when the 

covariate with missing data had a MCAR missingness mechanism; under a MAR 

missingness mechanism, the JAV approach was biased in some cases, but still outperformed 

passive imputation. Enders et al. (2014) found that the JAV method led to slightly biased 

regression coefficient estimates in some cases, but generally nominal levels of confidence 

interval coverage. From these results, it appears that JAV approach is reasonable to use in 

linear regression models. In the case of biased standard errors, a resampling technique 

such as the bootstrap (nonparametric or Bayesian) can be used to obtain more accurate 

standard error estimates and confidence intervals (Efron & Tibshirani, 1993; Rubin, 1981). 

On the contrary, with regards to logistic regression and the JAV imputation method, 

the research is inconclusive. von Hippel (2009) claims that the JAV approach works well in 

logistic regression models; however, his analysis and conclusions were based on an 

existing data set in which the true regression coefficients were unknown. Although Seaman 

et al. (2012) did not examine logistic regression models with interactions, they did find 

that both passive imputation and JAV methods for imputing quadratic covariates with 

MCAR and MAR missingness mechanisms resulted in substantial bias. In addition, the 

confidence interval coverage of the regression coefficient for the quadratic term was a 

function of the response distribution, specifically, with better coverage rates when the 

response had an even distribution in the two classes, 𝑃(𝑌 = 1) = 𝑃(𝑌 = 0) = .5, than when 

the response had a biased distribution in the two classes 𝑃(𝑌 = 1) = 01, 𝑃(𝑌 = 0) = .9.  
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 A more recent method was developed by Bartlett et al. (2014) to overcome the 

limitations of PI and JAV in imputing nonlinear covariate terms. The proposed method is an 

extension of FCS, called substantive model compatibility FCS (SMC-FCS), which derives 

imputation models for nonlinear covariate terms that are theoretically compatible with the 

underlying substantive model that the nonlinear term is included in as a covariate. Results 

from simulation studies show that compared to PI and JAV, SMC-FCS provides more 

consistent estimates for both linear regression and Cox proportional hazards models that 

contain nonlinear covariate terms. Although these results are promising, as applied the 

structural equation models, the application of their methods is ambiguous. Specifically, the 

SMC-FCS approach derives compatible distributions for variables with missing data based 

on an underlying substantive model, but in SEMs, a variable with missing data may appear 

as a covariate in several substantive models and even be the response of another 

substantive model. Moreover, the empirical performance of their method in the case of 

logistic regression models with nonlinear effects is unknown.  

 PI, JAV, and SMC-FCS are imputation procedures designed to impute a nonlinear 

term that contains missing data. The second scenario in which nonlinearities can be 

modeled in an imputation procedure is when an endogenous variable contains missing 

data in which the underlying substantive model contains nonlinear terms. This scenario is 

particularly relevant for moderated mediation models, in which the response variable may 

contain missing data and the underlying substantive model contains at least one 

interaction term. For best practice of MI, the imputation model should at least incorporate 

the same effects as the substantive model (Allison, 2003; Little & Rubin, 2002; Schafer, 

1997, van Buuren, 2012; Zhang, 2003). That is, if the substantive model contains 
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interactions, then the imputation model should contain interactions. It is important to note 

that unless directly specified, the JM MI algorithm and MICE implementation of the FCS MI 

were not designed to automatically impute interaction effects. That is, the interaction 

variables must be explicitly created and added to the existing data before either of these MI 

algorithms are used.  

For imputing variables in which the substantive model contains nonlinear effects, 

tree-based imputation models (e.g., classification and regression trees, random forests, 

gradient boosted trees) have shown to be very effective at automatically retaining the 

nonlinear effects of such models (Abrahantes, Sotto, Molenberghs, Vromman, & Bierinckx, 

2011; Burgette & Reiter, 2010; Doove et al., 2014; Shah, Bartlett, Carpenter, Nicholas, & 

Hemingway, 2014; Stekhoven & Bühlmann, 2012; Twala, Jones, & Hand, 2008; Wang & 

Feng, 2009). The application of these models for imputation of missing data will be 

described in detail in the next chapter.  
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CHAPTER 3 

SUPERVISED MACHINE LEARNING FOR MULTIPLE IMPUTATION 

 

3.1. Supervised Machine Learning Perspective of Missing Data 

Machine learning is a subfield of computer science that explores the development 

and applications of computational algorithms to extract patterns and trends in data 

(Mitchell, 1997). The applications of machine learning models are often classified into 

three categories: (1) supervised learning, (2) unsupervised learning, and (3) 

reinforcement learning. The framework for supervised machine learning applications to 

predictive modeling and pattern recognition can be paralleled to applications of missing 

data imputation. This chapter discusses the concept of supervised learning, the application 

of supervised machine learning algorithms to multiple imputation in structural equation 

models, and a novel MI algorithm that combines classic linear models with tree-based 

ensemble machine learning models.  

In the simplest case of supervised learning, a data set with 𝑁 samples is first 

partitioned into two independent data sets, a training set 𝒟train = {𝑦𝑖 , 𝐱𝑖}1
𝑛1 and a test set 

𝒟test = {𝑦𝑖, 𝐱𝑖}1
𝑛2 , where 𝑛1 and 𝑛2 denote the sizes of the training and test sets, 

respectively and 𝑛1 + 𝑛2 = 𝑁. In both sets, 𝐱𝑖 = [𝑥1, … , 𝑥𝑝] is a 1 × 𝑝 vector of features (or 

covariates) for sample 𝑖 and 𝑦𝑖 is the corresponding label (or response variable to be 

predicted) for sample 𝑖. After partitioning the samples, the training set is used to estimate 

(or train) the model parameters and the trained model is used to predict the labels (or 

response values) on the test set. When the labels are known in the test set, metrics can be 

calculated to determine the accuracy of the model predictions. Unfortunately, in most 
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practical applications every sample 𝑖 does not have a corresponding label 𝑦𝑖. When the 

labels are unknown for some samples, often the 𝑛1 samples with labels will correspond to 

the training set and the 𝑛2 unlabeled samples will correspond to the test set, in which case 

𝒟test = {𝑦𝑖, 𝐱𝑖}1
𝑛2  becomes 𝒟test = {𝐱𝑖}1

𝑛2 .  

 To make the supervised learning connection to a missing data context, consider a 

data set 𝐗 with 𝑁 samples and 𝑝 features. In the simplest case only the 𝑗th variable 𝐱𝑗  has 

missing values. If we treat 𝐱𝑗  as our corresponding label variable, then for sample 𝑖 we can 

partition the samples based on the 𝑛1 observed values for 𝐱𝑗  and the 𝑛2 missing values for 

𝐱𝑗 . That is, let the observed data set 𝒟𝒾obs,𝑗
= {𝑥𝑖𝑗 , 𝐱𝑖(−𝑗)}𝑖=1

𝑛1
 (or training set) and missing 

data set 𝒟𝒾mis,𝑗
= {𝐱𝑖(−𝑗)}𝑖=1

𝑛2
 (or test set), where 𝑛1 and 𝑛2 denote the sizes of the observed 

and missing test sets, respectively and 𝑛1 + 𝑛2 = 𝑁. Here, the notation 𝒟𝒾obs,𝑗
=

{𝑥𝑖𝑗 , 𝐱𝑖(−𝑗)}𝑖=1
𝑛1

 denotes the set of 𝑛1 samples with 𝑥𝑖𝑗  observed for sample 𝑖 and variable 𝑗 

and with 𝐱𝑖(−𝑗) = [𝑥𝑖1, … , 𝑥𝑖(𝑗−1), 𝑥𝑖(𝑗+1), … , 𝑥𝑖𝑝] as the 1 × 𝑝 − 1 vector of features for 

sample 𝑖 that does not include variable 𝑗. Similarly, 𝒟𝒾mis,𝑗
= {𝐱𝑖(−𝑗)}𝑖=1

𝑛2
 denotes the set of 

𝑛2 samples with 𝑥𝑖𝑗  missing for sample 𝑖 and variable 𝑗 and with 𝐱𝑖(−𝑗) =

[𝑥𝑖1, … , 𝑥𝑖(𝑗−1), 𝑥𝑖(𝑗+1), … , 𝑥𝑖𝑝] as the 1 × 𝑝 − 1 vector of features for sample 𝑖 that does not 

include variable 𝑗 (see Figure [3.1] for a visual).  

After partitioning the samples, the observed data 𝒟𝒾obs,𝑗
= {𝑥𝑖𝑗 , 𝐱𝑖(−𝑗)}𝑖=1

𝑛1
 can be 

used as a training set to estimate (or train) the model parameters and the trained model 

can be used to predict (or impute in statistical language) the labels for the missing data set 

𝒟𝒾mis,𝑗
= {𝐱𝑖(−𝑗)}𝑖=1

𝑛2
. The procedure described here forms the basis of the machine learning- 
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  Features Label Features 
  𝐱1 𝐱2 ∙∙∙ 𝐱𝑗  ∙∙∙ 𝐱𝑝 

 
 

 

1       
2       
∙       
∙       
∙       
𝑛1       

 
 

 

1    ?   
2    ?   
∙    ?   
∙    ?   
∙    ?   
𝑛2    ?   

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.1. Example partitioning for supervised learning application to a missing data 

problem. The partitioning scheme is based on the 𝑛1 observed values on label 𝐱𝑗  (lighter 

grey rows) and the 𝑛2 missing values on label  𝐱𝑗  (darker grey rows).  

 

based MI algorithms described later.  

In psychological research, the most commonly used models for MI are parametric 

regression models (e.g., linear regression for continuous responses and logistic regression 

for discrete responses). Current implementation of these methods for MI involves 

predicting missing values on a variable or set of variables based on the first-order linear 

combination of the remaining variables in a data set. Although this approach works well 

under a variety of settings, there are inherent limitations. Specifically, only including first-

order linear combinations precludes their use to imputing nonlinearities (e.g., 

interactions). This limitation is of practical importance to imputing missing data involving 

interactions in moderated mediation models. Nonlinear terms can be specified in the 

imputation models, however, other statistical models exist that automatically incorporate 
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nonlinearities into imputation routines. In addition, linear regression models are not 

robust to outliers, which are common in practice. Similarly, logistic regression models have 

poor performance with sparse data and small sample sizes (Cohen, Cohen, West, & Aiken, 

2002). To overcome some of these issues, however, regularization penalties can be added 

to objective functions (Bishop, 2006). 

In cases where parametric regression models with linear main effects are not 

appropriate due to concerns with nonlinearities in the data, nonparametric methods such 

as classification and regression tree (CART; Breiman, Friedman, Olsen, & Stone, 1984) 

models and ensemble CART-based models may be suitable replacements for MI. 

Unfortunately, these nonparametric methods are not without their limitations as well. In 

the next sections, we discuss the CART model, a flexible method of additive learning known 

as gradient boosting, and the applications of these methods to imputing missing data. In 

addition, we discuss the limitations of using only linear- or tree-based models for imputing 

missing data and introduce a unified framework that can automatically accommodate both 

types of imputation models using gradient boosting.  

 

3.2. Classification and Regression Trees 

3.2.1. Overview. Classification and regression trees (CART) models are simple, but 

powerful supervised machine learning models. The CART model is a type of adaptive basis-

function model of the form 

 
𝑓(𝐱) =∑γ𝑗ϕ𝑗(𝐱)

𝐽

𝑗=1

, (3.1) 

in which ϕ𝑗(𝐱) = ϕ𝑗(𝐱|𝛂𝑗) is a parametric basis function. An advantage of this specification 
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is that the model is not linear in the parameters, so nonlinearities such as interactions 

between variables are easily modeled. Each parameter 𝛂𝑗  encodes both the feature used for 

splitting and the corresponding threshold value. The basis functions define the region, and 

the weights encode the response value in each terminal region. Specifically, for continuous-

valued labels, the response value in the 𝑗th region is the arithmetic mean of the labels in the 

region, whereas for discrete-valued labels, the response value is the distribution of classes 

in the 𝑗th region.  

The CART model uses a binary, recursive partition algorithm to partition the space 

of features based on a training set 𝓓train into 𝑅𝑗 , 𝑗 = 1,… , 𝐽 disjoint regions, where 

⋃ 𝑅𝑗
𝐽
𝑗=1 = 𝓓train and ⋂ 𝑅𝑗 = ∅𝐽

𝑗=1 , into a piecewise-constant response surface (Hastie et al., 

2009). In each partitioned region of the feature space a constant γ𝑗 is assigned based on the 

predictive rule, 

 𝐱 ∈ 𝑅𝑗 ⟹ 𝑓(𝐱) = γ𝑗. (3.2) 

In words, (3.2) simply says if the feature vector results in terminal node 𝑅𝑗 , the predicted 

label is γ𝑗. Following the specification in (3.1), a tree can be formally expressed as  

 
𝑓(𝐱|𝚯) =∑γ𝑗𝐼(𝐱 ∈ 𝑅𝑗),

𝐽

𝑗=1

 (3.3) 

with parameters 𝚯 = {𝑅𝑗 , γ𝑗}1
𝐽
, where 𝐽 denotes the total number of terminal nodes. Here, 

𝐼(∙) is the indicator function defined as  

 
𝐼(𝐱 ∈ 𝑅𝑗) = {

1, 𝐱 is member in 𝑅𝑗
0, otherwise

.  

Figure (3.2) presents an example of a partitioned input space based on two features,  
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𝑅2 
 
 

 
 
 
𝑅3 

 
𝑅5 

 

 

𝑠4 

 
 

𝑅4 𝑠2  
 

𝑅1 
  

 𝑠1 𝑠3  
 

𝐹𝑖𝑔𝑢𝑟𝑒 3.2. Example of partitioned joint input space based on two features, 𝑋1 and 𝑋2.  

 

𝑋1 and 𝑋2. The binary tree for the CART model corresponding to Figure (3.2) is displayed in 

Figure (3.3). Using the parameterization of the model given by (3.3), the CART model 

corresponding to the Figures (3.2) and (3.3) can be written as 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.3. CART model based on Figure (3.2).  

 

𝑋1 ≤ 𝑠1 

𝑋2 ≤ 𝑠2 𝑋1 ≤ 𝑠3 

𝑋2 ≤ 𝑠4 

𝑅1 𝑅2 𝑅3 

𝑅4 𝑅5 

𝑋1 

𝑋
2
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𝑓 (𝐱|{𝑅𝑗 , γ𝑗}1

5
) =∑γ𝑗𝐼(𝐱 ∈ 𝑅𝑗)

5

𝑗=1

 

= γ1𝐼(𝑋1 ≤ 𝑠1 ∧ 𝑋2 ≤ 𝑠2)

+ γ2𝐼(𝑋1 ≤ 𝑠1 ∧ 𝑋2 > 𝑠2)

+ γ3𝐼(𝑋1 > 𝑠1 ∧ 𝑋1 ≤ 𝑠3)

+ γ4𝐼(𝑋1 > 𝑠1 ∧ 𝑋1 > 𝑠3 ∧ 𝑋2 ≤ 𝑠4)

+ γ5𝐼(𝑋1 > 𝑠1 ∧ 𝑋1 > 𝑠3 ∧ 𝑋2 > 𝑠4), 

 

with ∧ denoting the ‘and’ logical condition. From Figure (3.3), the regions where splitting 

rules are shown (e.g., 𝑋1 ≤ 𝑠1) and the partitioned input space (e.g., 𝑅1) are called nodes. 

There are two types of nodes, parent nodes and child nodes. Each parent node is 

partitioned into a left child node and a right child node based on a selected splitting 

criterion 𝑥𝑗 ≤ 𝑥𝑗
𝑠∗(see Figure [3.4]). If a node has no further partitions, it is called a terminal  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.4. Splitting algorithm for CART.  

 

node (denoted by 𝑅 in Figure [3.3]). The basic idea of tree growing in a CART mode is to 

choose a binary split among all possible binary splits at each node so that the resulting 

child nodes are the ‘purest’. In the CART model, only univariate splits are considered. That 

𝑡𝐶ℎ𝑖𝑙𝑑 𝑅𝑖𝑔ℎ𝑡 𝑡𝐶ℎ𝑖𝑙𝑑 𝐿𝑒𝑓𝑡 

𝑡𝑃𝑎𝑟𝑒𝑛𝑡 

𝑥𝑗 ≤ 𝑥𝑗
𝑠∗ 𝑥𝑗 > 𝑥𝑗

𝑠∗  
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is, each split depends on the value of only one feature. All possible splits consist of possible 

splits for each feature. A tree is grown starting from the root node by repeatedly using the 

following three steps on each node: (1) find each feature’s best split, (2) find the node’s 

best split, and (3) split the node using its best split found in Step (2) if stopping rules are 

not satisfied. 

As mentioned above, the parameters in a CART model include the variables (or 

features) used for splitting, the threshold values for each split, and the expected response 

within each partitioned region. The parameters are found by minimizing the empirical risk  

  
𝚯̂ = arg min

𝚯
∑ ∑ 𝐿(𝑦𝑖, γ𝑗)

𝐱𝑖∈𝑅𝑗

𝐽

𝑗=1

. (3.4) 

However, minimizing (3.4) is an intractable optimization problem. Fortunately, a greedy, 

top-down approach is used to approximate global solutions to (3.4) (Brieman et al., 1984). 

The greedy approach is based on two parts: (1) the challenging part of finding 𝑅𝑗  and (2) 

the easier part of finding γ𝑗 given 𝑅𝑗 . To solve both parts, it is often easier to approximate 

(3.4) by a smoother and more convenient criterion for optimizing 𝑅𝑗 , 

 
𝚯̂ = arg min

𝚯
∑(𝑦𝑖, 𝑓(𝐱𝑖|𝚯))

𝑛1

𝑖=1

.  

Given 𝑅̂𝑗 , γ𝑗 is often estimated by γ̂𝑗 = 𝑦̅𝑗  (i.e., the mean of the 𝑦𝑖 ∈ 𝑅𝑗) for regression loss 

functions or by the majority probability class of observations falling in region 𝑅𝑗  for 

classification loss functions. The optimal splitting variables and split points are determined 

based on a node’s impurity measure, 𝑖(𝑡), where 𝑡 denotes the 𝑡th node in a tree (Hastie et. 

al, 2009). Maximum homogeneity of child nodes is defined by the impurity function 𝑖(𝑡). 

Since the impurity of a parent node 𝑡𝑝 is constant for any of the possible splits 𝑋𝑗 ≤ 𝑋𝑗
𝑠, 𝑗 =
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1, … , 𝑝, the maximum homogeneity of left and right child nodes will be equivalent to the 

maximization of change of impurity function Δ𝑖(𝑠, 𝑡) 

 Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡𝑃) − 𝐸(𝑡𝐶),  

where 𝑡𝐶  consists of the left and right child nodes of the parent node 𝑡𝑃 to be split on 

(James, Witten, Hastie, & Tibshirani, 2013). Assuming that 𝑃𝐿 =
|𝑡𝐿|

|𝑡|
 and 𝑃𝑅 =

|𝑡𝑅|

|𝑡|
 are the 

probabilities of the left and right child nodes, respectively, the splitting criterion can be 

defined as 

 Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡𝑃) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅).  

Therefore, at each node CART solves the following maximization problem 

 arg max
𝑥𝑗≤𝑥𝑗

𝑠∗ ,𝑗=1,…,𝑝

[𝑖(𝑡𝑃) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅)].  

Depending on the type of problem, that is regression or classification, different 

impurity measures are used. For regression problems, the squared-error impurity function 

is used. The squared-error at node 𝑡 can be defined as 

 
𝑖(𝑡) =

1

|𝑡|
∑(𝑦𝑖 − γ𝑡)

2

𝑖∈𝑡

,  

where γ𝑡 =
1

|𝑡|
∑ 𝑦𝑖𝑖∈𝑡  is the expected mean response value of labels in node 𝑡. On the 

contrary, for classification problems with 𝑐 = 1,… , 𝐶 classes, generally the Gini index is the 

impurity function used. The Gini index at node 𝑡 can be defined as  

 
𝑖(𝑡) =∑𝑃(𝑐|𝑡)(1 − 𝑃(𝑐|𝑡))

𝐶

𝑐=1

, (3.5) 

where 𝑃(𝑐|𝑡) =
|𝑡𝑐|

|𝑡|
 is the conditional probability of the 𝑐th class in node 𝑡. In the case of 

binary classification, (3.5) simplifies to  
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 𝑖(𝑡) = 2𝑃(𝑐 = 1|𝑡)𝑃(𝑐 = 2|𝑡)  

where the notation 𝑃(𝑐 = 1|𝑡) and 𝑃(𝑐 = 2|𝑡) denotes the conditional probability of labels 

in class 1 and class 2, respectively, at node 𝑡. In regularized stochastic gradient boosting 

(discussed later), we will introduce information gain as the impurity measure of choice.  

 The algorithm used in the CART model recursively splits tree nodes until specific 

stopping criteria are met. For instance, if a node is pure, that is, all samples within a node 

have identical labels, the node will not be split. Similarly, if all samples in a node have 

identical values for each feature, the node will not be split. Four additional user-specified 

stopping criteria for node splitting occur if: (1) the tree reaches the specified maximum 

depth limit, (2) the size of a node is less than the minimum specified node size, (3) the split 

of a node results in a child node whose node size is less than the specified minimum child 

node size, and (4) the best split found for a variable 𝑥𝑗 ≤ 𝑥𝑗
𝑠∗  at node 𝑡 is smaller than the 

specified minimum improvement (Breiman et al., 1984; Hastie et al., 2009). The CART 

algorithm is presented in Algorithm (3.1).  

 

Algorithm 3.1. Classification and Regression Tree (CART) 

Requires: Training data 𝓓train = {𝑦i, 𝐱𝑖}1
𝑛1 

  1. Create node 𝑡 
  2. if stopping criteria met for 𝑡 then 
  3. γ̂ ← 𝐸(𝑦𝑖 ∈ 𝑅𝑡) 
  4. else 
  5. 𝑥𝑠

∗
← arg max

𝑥𝑗≤𝑥𝑗
𝑠∗ ,𝑗=1,…,𝑝

[𝑖(𝑡𝑃) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅)] 

  6. 𝓓 ← 𝓓𝑡𝐿 ∪𝓓𝑡𝑅  according to 𝑥𝑠
∗
 

  7. 𝑡𝐿 ←  Build CART using 𝓓𝑡𝐿  

  8. 𝑡𝑅 ←  Build CART using 𝓓𝑡𝑅  

  9. end if 
 

Compared to traditional statistical methods (e.g., linear regression, logistic 
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regression), CART models have several advantages. First, the CART model makes no formal 

distributional assumptions and can be used for both regression and classification (Strobl, 

Malley, & Tutz, 2009). Second, variable selection is automatic and the recursive binary 

partitioning algorithm can automatically fit nonlinear interactions (Doove et al., 2014). 

Lastly, CART models can easily handle sparse data (Strobl et al., 2009). On the contrary, 

although CART models provide relatively unbiased estimates, they are prone to overfitting 

(Hastie et al., 2009). That is, the model learns both the signal and the noise of a training set. 

Overfitting on a training set leads to poor model generalization (James et al., 2013). A 

preferred strategy to combat overfitting is to grow a large tree, then prune the tree using a 

cost-complexity pruning (see Hastie et al., 2009 for more details). Trees are also highly 

unstable. That is, a small change in a feature can often lead to different splits. Given the 

problems of overfitting and high variability in CART models, a clever method to reduce 

these problems is to combine the predictions of many tree models. The combination of 

multiple models is more commonly referred to as ensemble learning (Bishop, 2006).    

3.2.2. Application to missing data. As discussed in the previous chapter, tree-based 

models such as CART have been shown to be useful for multiple imputation of missing data. 

Burgette and Reiter (2010) examined the bias, root-mean square error, and confidence 

interval coverage for linear regression coefficients estimated with missing data that was 

imputed using MICE and CART. Interestingly, Burgette and Reiter found that imputation 

routines using CART generally performed better than MICE on all three metrics, even on 

linear main effects. Doove et al. (2014) also found that CART outperformed MICE for 

regression coefficients of nonlinear terms, however, for regression coefficients of linear 

main effects, they found that MICE outperformed CART in all scenarios in their simulation 



www.manaraa.com

109 

 

studies. Moreover, CART models preserved interaction effects better than random forests 

(i.e., an ensemble method that combines many CART models).  

Although the results of these two studies are contradictory in terms of imputing 

linear main effects using CART, it is important to note that CART (and other tree-based 

models) are limited in two common missing data scenarios because of the underlying 

recursive partitioning algorithm used to build the trees. First, tree-based methods are only 

capable of data interpolation, that is, the imputed (or predicted) values are bounded by the 

range of the observed labels in the training data. Second, tree-based methods have 

difficulty in modeling linear main effects because the recursive-partitioning algorithm is 

inherently nonlinear due to a series of binary splits of the feature space. Consequently, 

CART should not be used as a standalone imputation model applied to all variable types. 

The next section discusses a more general framework, using gradient boosted models, that 

can incorporate models to impute both linear and nonlinear effects under the same general 

model.  

3.3. Gradient Boosted Learning 

3.3.1. Overview. Boosting is a powerful supervised machine learning meta-algorithm 

that is used to solve function estimation problems and also used to reduce bias and 

variance in prediction problems (Freund & Schapire, 1997). The function estimation view 

provides a general framework for its use in supervised machine learning applications. In a 

function estimation setting, based on a set of training 𝓓train = {𝑦i, 𝐱𝑖}1
𝑛1 , the goal is to find a 

function 𝑓∗(𝐱) that maps 𝐱 to 𝑦, such that over the joint distribution of all (𝑦, 𝐱)-values, the 

expected value of a specified loss function 𝐿(𝑦, 𝑓(𝐱)) is minimized 

𝑓∗(𝐱) = arg min
𝑓(𝐱)

𝐸𝑦,𝐱𝐿(𝑦, 𝑓(𝐱)) 
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= arg min
𝑓(𝐱)

𝐸𝐱[𝐸𝑦[𝐿(𝑦, 𝑓(𝐱))]
⏞        

expectation over 𝑦

|𝐱]⏟              
expectation over training data

. 

From this vantage, gradient boosting is a method that learns the functional relationship 

𝑓(∙) between inputs and outputs based on the features and labels of the training data 

(Natekin & Knoll, 2013). Boosting approximates 𝑓∗(𝐱) by an additive-type expansion of the 

form similar to (3.1), 

 
𝑓(𝐱) = ∑ β𝑚𝑓𝑚(𝐱|𝚯𝑚)

𝑀

𝑚=0

  

where the functions 𝑓(𝐱|𝚯) are base learners. Often, the base learners 𝑓(∙) are chosen to be 

‘weak’ learners (e.g., shallow CART models, simple linear models) that by themselves have 

little predictive power, but when combined in an ensemble form a power predictive 

analytic model. The expansion coefficients {β𝑚}0
𝑀 and parameters {𝚯𝑚}0

𝑀 are jointly fit to 

the data in forward stage-wise manner, where one starts with an initial guess 𝑓0(𝐱) and 

then for 𝑚 = 1,… ,𝑀 

 
(β𝑚, 𝚯𝑚) = argmin

β,𝚯
∑𝐿(𝑦𝑖, 𝑓𝑚−1(𝐱𝑖) + β𝑓(𝐱𝑖|𝚯))

𝑛1

𝑖=1

 (3.6) 

and  

 𝑓𝑚(𝐱) = 𝑓𝑚−1(𝐱) + β𝑚𝑓(𝐱|𝚯𝑚). (3.7) 

A technique introduced by Friedman (2001) called gradient boosting approximately solves 

(3.6) for arbitrary differential loss functions using a general procedure. Specifically, first 

the function ℎ(𝐱|𝚯) is fit by least-squares  

 
𝚯𝑚 = argmin

𝚯,ρ
∑𝐿(𝑦̃𝑖𝑚 − ρ𝑓(𝐱𝑖|𝚯))

2

𝑛1

𝑖=1

 (3.8) 
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where  

 
𝑦̃𝑖𝑚 = −

𝜕𝐿(𝑦i, 𝑓(𝐱i))

𝜕𝑓(𝐱𝑖)
|
𝑓(𝐱)=𝑓𝑚−1(𝐱)

 (3.9) 

are the working responses, or “pseudo”-residuals. Then, given 𝑓(𝐱𝑖|𝚯), the optimal value of 

the coefficient β𝑚 is determined  

 
β𝑚 = argmin

𝚯,ρ
∑𝐿(𝑦𝑖, 𝑓𝑚−1(𝐱𝑖) + β𝑓(𝐱𝑖|𝚯𝑚))

𝑛1

𝑖=1

. (3.10) 

This general two-step procedure replaces an intractable optimization problem given in 

(3.6) by one based on least-squares (3.8), followed by a single parameter optimization 

(3.10) (Bühlmann & Hothorn, 2007). 

The logic behind why gradient boosting works is described in (2001), Hastie et al. 

(2009), and Bühlmann and Hothorn (2007). First, consider a nonparametric approach to 

numerical optimize arg min
𝑓(𝐱)

𝐸𝑦,𝐱𝐿(𝑦, 𝑓(𝐱)) in function space. In this case, we consider 𝑓(𝐱) 

evaluated at each point 𝐱 to the parameter and thus want to minimize. Theoretically, in 

function space there are an infinite number of such parameters, but in finite data sets, only 

a finite number of parameters {𝑓(𝐱𝑖)}1
𝑛1 exist. Using the boosting technique of function 

approximation, the approximation is an additive form 

 
𝑓∗(𝐱) = ∑ 𝑓𝑚(𝐱)

𝑀

𝑚=0

. (3.11) 

Similar to before, in (3.11) 𝑓0(𝐱) is an initial guess and {𝑓𝑚(𝐱)}1
𝑚 are incremental boosts (or 

steps) defined by an optimization method (Natekin & Knoll, 2013). In particular, using a 

steepest-descent optimization routine, 

 𝑓𝑚(𝐱) = −ρ𝑚𝑔𝑚(𝐱) (3.12) 
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with  

 
𝑔𝑚(𝐱) = 𝐸𝑦,𝐱 [

𝜕𝐿(𝑦i, 𝑓(𝐱i))

𝜕𝑓(𝐱𝑖)
|
𝑓(𝐱)=𝑓𝑚−1(𝐱)

] (3.13) 

as the unconstrained gradient (assuming sufficient regularity conditions hold) with  

 
𝑓𝑚−1(𝐱) = ∑ 𝑓𝑖(𝐱)

𝑚−1

𝑖=0

.  

The negative gradient in (3.13) is said to define the steepest-descent direction and the 

multiplier ρ𝑚 is given by the line search 

 ρ𝑚 = arg min
ρ

𝐸𝑦,𝐱𝐿(𝑦, 𝑓𝑚−1(𝐱) − ρ𝑔𝑚(𝐱)). (3.14) 

Consider a case where, for a particular loss function and/or base learner, the 

solution to (3.6) is intractable. Given some approximation 𝑓𝑚−1(𝐱), the function β𝑓(𝐱|𝚯𝑚) 

in (3.6) and (3.7) can be viewed as the steepest-descent step in (3.12) based on the 

training data under the constraint that the step direction 𝑓(𝐱|𝚯𝑚) be a member of the 

parametrized class of functions 𝑓(𝐱|𝚯) (Friedman, 2001). For a finite set of training data 

{𝑦𝑖, 𝐱𝑖}1
𝑛1 , the data-based analog of the unconstrained gradient (3.13)  

 
−𝑔𝑚(𝐱𝑖) = −

𝜕𝐿(𝑦i, 𝑓(𝐱i))

𝜕𝑓(𝐱𝑖)
|
𝑓(𝐱)=𝑓𝑚−1(𝐱)

 (3.15) 

gives the best steepest-descent step direction −𝐠𝑚 = {−𝑔𝑚(𝐱𝑖)}1
𝑛1 in the 𝑛1-dimensional 

data space at 𝑓𝑚−1(𝐱). The problem, however, is that the data-based unconstrained 

gradient can only be estimated at the observed values in the training set. Therefore, to 

increase generalization to non-observed values, Friedman (2001) proposed that by solving 

the minimization 
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𝚯𝑚 = argmin

𝚯,β
∑(−𝑔𝑚(𝐱𝑖) − β𝑓(𝐱𝑖|𝚯))

2

𝑛1

𝑖=1

  

one obtains the member of the parametrized class 𝑓(𝐱|𝚯) that is most highly correlated 

with −𝑔𝑚(𝐱) ∈ ℛ𝑛1 over the data distribution. Now, in the steepest-descent routine the 

constrained negative gradient 𝑓(𝐱|𝚯𝑚) is used in place of the unconstrained one −𝑔𝑚(𝐱𝑖) 

(3.15) and the line search is performed using  

 
ρ𝑚 = arg min

ρ
∑𝐿(𝑦𝑖, 𝑓𝑚−1(𝐱𝑖) − ρ𝑓(𝐱𝑖|𝚯𝑚))

𝑛1

𝑖=1

. (3.16) 

Finally, the approximation is updated as 

 𝑓𝑚(𝐱) = 𝑓𝑚−1(𝐱) + ρ𝑚𝑓(𝐱|𝚯𝑚). (3.17) 

Although Friedman (2001) proposed the line search step given in (3.16), Bühlmann and 

Hothorn (2007) showed that for loss functions in the exponential family (e.g., squared-

error loss, negative log-likelihood binomial loss) a good functional estimator of 𝑓∗(𝐱) can 

be obtained by removing the line search step, specifying a small learning rate parameter, 

and increasing the number of boosting iterations. That is, (3.17) is often replaced with  

 𝑓𝑚(𝐱) = 𝑓𝑚−1(𝐱) + ν𝑓(𝐱|𝚯𝑚),  

where ν is the learning rate and is usually a constant, small number (e.g., .01) (Bühlmann & 

Hothorn, 2007). 

3.3.2. Regularized gradient boosting. Generally, best practice in any predictive 

modeling to prevent overfitting is to define the objective function 𝐽(𝚯) as the sum of two 

components, the training loss 𝐿(𝚯) and the regularization penalty Ω(𝚯), 

 𝐽(𝚯) = 𝐿(𝚯) + Ω(𝚯). (3.18) 

In the context of gradient boosted models, 𝐿(𝚯) is a standard loss function such as the 
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squared error loss for continuous variables or negative log-likelihood binomial loss for 

binary variables. The added regularization penalty function Ω(𝚯) is a standard 

regularization function, such as the L2-norm imposed on the regression weights in a linear 

or logistic regression model or on the leafs of a CART model, to help the train a model to 

generalize to independent test data (i.e., help prevent overfitting; Bishop, 2006). As 

Proposition (3.1) shows, for linear models with a squared error loss or negative log-

likelihood binomial loss, imposing an L2-norm on the regression weights leads to an 

equivalent objective function as specifying a 𝑁(𝟎, 𝐈) (i.e., normal distribution with mean 

vector 𝟎 and covariance matrix 𝐈) prior on the regression weights.  

 

Proposition 3.1. The objective functions in linear and logistic regression models with L2-

norms imposed on the regression weights are equivalent to the objective functions in linear 

and logistic regression models with Gaussian 𝑁(𝟎, 𝐈) priors on the regression coefficients 𝛃. 

Proof: 

  We will first prove the proposition for linear regression models. Adding the L2-

norm on the squared error loss yields, 

 
𝐽(𝐲|𝐱, 𝛃, λ) =

1

2
∑(𝑦𝑖 − 𝐱𝑖

′𝛃)2 +
λ

2
∑β𝑗

2

𝑝

𝑗=1

𝑛1

𝑖=1

, (3.19) 

where λ is the regularization parameter. If we negate the objective function in (3.19) and 

then exponentiate the result, we obtain 

 
𝐽(𝐲|𝐱, 𝛃, λ) = 𝑒

−
1
2
∑ (𝑦𝑖−𝐱𝑖

′𝛃)
2
−
λ
2
∑ β𝑗

2𝑝
𝑗=1

𝑛1
𝑖=1   

= 𝑒−
1
2
∑ (𝑦𝑖−𝐱𝑖

′𝛃)
2𝑛1

𝑖=1 𝑒
−
λ
2
∑ β𝑗

2𝑝
𝑗=1 . 
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From the theory of linear models, we know that the distribution of the response 𝑦𝑖 is 

normal with mean given by the linear function 𝐱𝑖
′𝛃 and constant variance σ2, or 𝑁(𝐱𝑖

′𝛃, σ2) 

(Rao, 1976). Moreover, we know that a 𝑁(𝟎, 𝐈) Gaussian prior on 𝛃 is proportional to 

𝑒
−
1

2
∑ β𝑗

2𝑝
𝑗=1 . Thus, the posterior distribution under of the linear model 𝑁(𝐱𝑖

′𝛃, σ2) under a 

𝑁(𝟎, 𝐈) prior on 𝛃 is  

 
𝐽∗(𝐲|𝐱, 𝛃, σ2) =∏𝑁(𝐱𝑖

′𝛃, σ2) × 𝑁(𝟎, 𝐈)

𝑛1

𝑖=1

 

∝ 𝑒
−

1
2σ2

∑ (𝑦𝑖−𝐱𝑖
′𝛃)

2𝑛1
𝑖=1 𝑒

−
1
2
∑ β𝑗

2𝑝
𝑗=1 . 

 

Comparing 𝐽∗(𝐲|𝐱, 𝛃, σ2) to 𝐽(𝐲|𝐱, 𝛃, λ), the objective functions are equivalent by setting λ =

1

σ2
, that is, the regularization parameter in 𝐽(𝐲|𝐱, 𝛃, λ) is equal to the precision parameter in 

𝐽∗(𝐲|𝐱, 𝛃, σ2).  

For logistic regression models, adding the L2-norm to negative log-likelihood 

binomial loss gives 

𝐽(𝐲|𝐱, 𝛃, λ) = −∑[𝑦𝑖log (
1

1 + 𝑒−𝐱𝑖
′𝛃
) + (1 − 𝑦𝑖)log (

1

1 + 𝑒𝐱𝑖
′𝛃
)]

𝑛1

𝑖=1

+
λ

2
∑β𝑗

2

𝑝

𝑗=1

. 

If we denote the binomial likelihood loss function as 𝑓(𝐲|𝐱), we see that applying a 𝑁(𝟎, 𝐈) 

Gaussian prior on 𝛃 gives the posterior distribution 

∏𝑓(𝐲|𝐱) × 𝑁(𝟎, 𝐈)

𝑛1

𝑖=1

∝∏(
1

1 + 𝑒−𝐱𝑖
′𝛃
)
𝑦𝑖

(
1

1 + 𝑒𝐱𝑖
′𝛃
)
1−𝑦𝑖

𝑛1

𝑖=1

𝑒
−
λ
2
∑ β𝑗

2𝑝
𝑗=1 . (3.20) 

Negating (3.20) and taking the log, 

𝐽∗(𝐲|𝐱, 𝛃) = −log [∏(
1

1 + 𝑒−𝐱𝑖
′𝛃
)
𝑦𝑖

(
1

1 + 𝑒𝐱𝑖
′𝛃
)
1−𝑦𝑖

𝑛1

𝑖=1

𝑒
−
λ
2
∑ β𝑗

2𝑝
𝑗=1 ] 
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= −∑[𝑦𝑖log (
1

1 + 𝑒−𝐱𝑖
′𝛃
) + (1 − 𝑦𝑖)log (

1

1 + 𝑒𝐱𝑖
′𝛃
)]

𝑛1

𝑖=1

+
λ

2
∑β𝑗

2

𝑝

𝑗=1

, 

we see that 𝐽(𝐲|𝐱, 𝛃, λ) is equivalent to 𝐽∗(𝐲|𝐱, 𝛃). This completes the proof. ∎ 

 

A corollary of Proposition (3.1) is that the least-squares estimator 𝛃̂LS of 𝛃 for 𝐽(𝐲|𝐱, 𝛃, λ) 

equals the maximum a posteriori (MAP) estimator 𝛃̂MAP of 𝛃 for 𝐽∗(𝐲|𝐱, 𝛃, σ2) and similarly 

the maximum likelihood estimator 𝛃̂MLE of 𝛃 for 𝐽(𝐲|𝐱, 𝛃, λ) equals the MAP estimator 𝛃̂MAP 

of 𝛃 for 𝐽∗(𝐲|𝐱, 𝛃).   

 A more recent framework of gradient boosted, eXtreme gradient boosted (XBG or 

XGBoost), developed by Chen and Guestrin (2016), makes use of gradient boosted learners 

with objective functions of the form in (3.18). XGBoost was developed as a large-scale 

regularized gradient boosting framework that incorporates linear boosters via methods 

similar to the generalized additive models (GAMs) proposed in Friedman, Hastie and 

Tibshirani (2000) and tree boosters similar to Friedman’s original gradient boosting 

framework (2001). Specifically, the predicted value 𝑦̂𝑖
(𝑀)

 with 𝑀 additive functions is 

 
𝑦̂𝑖
(𝑀)

= 𝑓0(𝐱𝑖) + ∑ ν𝑚𝑓𝑚(𝐱𝑖)

𝑀

𝑚=1

,    𝑓𝑚 ∈ ℱ  

and the learners 𝑓𝑚(𝐱𝑖) are selected based on optimizing the objective function 

 
𝐽(𝚯) =∑𝐿(𝑦𝑖, 𝑦̂𝑖)

𝑛1

𝑖=1

+ ∑ Ω(𝑓𝑚)

𝑀

𝑚=1

 

= ∑𝐿(𝑦𝑖 , 𝑦̂𝑖
(𝑀−1) + ν𝑀𝑓𝑀(𝐱𝑖))

𝑛1

𝑖=1

+ ∑ Ω(𝑓𝑚)

𝑀

𝑚=1

, 

 



www.manaraa.com

117 

 

where ν𝑀 is the learning rate for learner 𝑀. Note, the learning rate parameter here is 

denoted with a subscript to indicate that the learning rate can change during the learning 

process (e.g., using a polynomial decaying rate).   

 Under the XGBoost framework, linear boosters are important when the underlying 

function is strictly linear. In this case, the linear boosters can be implemented using the 

general functional gradient descent (FGD) algorithm for gradient boosted linear models 

given in Bühlmann and Hothorn (2007) and presented in Algorithm (3.2). Bühlmann and 

Hothorn’s (2007) FGD algorithm is 

 

Algorithm 3.2. Functional Gradient Descent for Boosted Models 

Requires: Training data 𝓓train = {𝑦i, 𝐱𝑖}1
𝑛1 

  1. 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓0(∙) ← arg min

𝑐
𝑛1
−1∑ 𝐿(𝑦𝑖, 𝑐)

𝑛1

𝑖=1
 

  2. for 𝑚 ← 1 to 𝑀 do 
  3. 

𝐮(𝑚) ← −
𝜕

𝜕𝑓
𝐿(𝐲, 𝑓)|

𝑓=𝑓𝑚−1(𝐱) 

 

  4. 
𝚯𝑚 ← argmin

𝚯
∑ 𝐽(𝑢𝑖

(𝑚)
, 𝑓𝑚(𝐱𝑖|𝚯))

𝑛1

𝑖=1
 

  5. 𝑓𝑚(𝐱) ← 𝑓𝑚−1(𝐱) + ν𝑓(𝐱|𝚯𝑚) 
  6. end for 

 

similar to Friedman’s (2001) gradient boosted algorithm, except the line search step is 

omitted in between Lines 4 and 5 due to the reasons given above. For linear boosters, a 

componentwise linear least squares variable selection procedure is implemented at each 

boosting iteration. If we consider the base procedure at any given boosting round 𝑚, then 

the ‘best’ prediction is 

 
𝑓𝑚(𝐱) =∑𝑥𝑖𝑠∗β̂𝑠∗

𝑛1

𝑖=1

,  
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where β̂𝑠∗  is 

 
β̂𝑠∗ =

∑ 𝑥𝑖,𝑠∗𝑢𝑖,𝑠∗
𝑛1
𝑖=1

∑ 𝑥𝑖,𝑠∗
2𝑛1

𝑖=1

  

and 𝑠∗ represents the index of the selected variable in 𝐱 and 𝛃̂ that minimizes the squared 

error, 

 
𝑠∗ = arg min

1≤𝑗≤𝑝
∑(𝑢𝑖 − 𝑥𝑖𝑗β̂𝑗)

2

𝑛1

𝑖=1

.  

In other words, 𝑠∗ is the index that represents the variable (and corresponding regression 

coefficient) that result in the closest prediction to the negative gradient 𝐮 at boosting round 

𝑚. The regression coefficient estimate can be updated as 

 β̂𝑚 = β̂𝑚−1 + ν𝑚β̂𝑠𝑚∗ .  

 In the case of continuous labels, where the squared-error loss function is used and 

an L2-norm is imposed on the regression weights, the initial function 𝑓0(∙) is the sample 

mean 𝑦̅ in Line 1 of Algorithm (3.2). The negative gradient (Line 3) is simply the residuals,  

−
𝜕𝐿(𝑦𝑖, 𝑦̂𝑖)

𝜕𝑦̂𝑖
=

𝜕

𝜕𝑦̂𝑖
[
1

2
(𝑦𝑖 − 𝑦̂𝑖)

2] 

= (𝑦𝑖 − 𝑦̂𝑖) 

and the objective function 𝐽(∙) that needs to be minimized (Line 4) is given is the squared-

error loss with the L2-norm. For this minimization, the componentwise linear least squares 

variable selection procedure described above is implemented. In the case of binary labels, 

the loss function used is still the negative log-likelihood binomial loss, however, there the 

function is reparametrized as 

 𝐿(𝑦𝑖, 𝑦̂𝑖) = log(1 + 𝑒−2𝑦̃𝑖𝑦̂𝑖) (3.21) 

where 𝑦̃𝑖 = 2𝑦𝑖 − 1 and 𝑦𝑖 ∈ {−1,1} or 
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 𝐿(𝑦𝑖, 𝑦̂𝑖) = log(1 + 𝑒−2(2𝑦𝑖−1)𝑦̂𝑖) (3.22) 

where 𝑦𝑖 ∈ {0,1}. In (3.21) and (3.22), 𝑦̂𝑖 is the predicted label for the 𝑖th sample. To obtain 

this result, if we also reparametrize 𝑃(𝑌 = 1) = 𝑝 as 

 
𝑝(𝑥𝑖) =

𝑒𝑦̂𝑖

𝑒𝑦̂𝑖 + 𝑒−𝑦̂𝑖
 

=
1

1 + 𝑒−2𝑦̂𝑖
, 

 

then  

 
1 − 𝑝(𝑥𝑖) =

𝑒−2𝑦̂𝑖

1 + 𝑒−2𝑦̂𝑖
.  

Rewriting the likelihood using indicator an indicator function, we obtain 

 
(

1

1 + 𝑒−2𝑦̂𝑖
)
𝐼(𝑦𝑖=1)

(
𝑒−2𝑦̂𝑖

1 + 𝑒−2𝑦̂𝑖
)

𝐼(𝑦𝑖=−1)

.  

The negative log-likelihood then becomes 

𝐿(𝑦𝑖, 𝑦̂𝑖) = −log [(
1

1 + 𝑒−2𝑦̂𝑖
)
𝐼(𝑦𝑖=1)

(
𝑒−2𝑦̂𝑖

1 + 𝑒−2𝑦̂𝑖
)

𝐼(𝑦𝑖=−1)

] 

= 𝐼(𝑦𝑖 = 1)log(1 + 𝑒−2𝑦̂𝑖) + 𝐼(𝑦𝑖 = −1)(log(1 + 𝑒−2𝑦̂𝑖) + 2𝑦̂𝑖). 

Note that (log(1 + 𝑒−2𝑦̂𝑖) + 2𝑦̂𝑖) = log(1 + 𝑒2𝑦̂𝑖) since 

 1 + 𝑒𝑎

1 + 𝑒−𝑎
=
𝑒𝑎(𝑒−𝑎 + 1)

1 + 𝑒−𝑎
 

= 𝑒𝑎 

 

which implies 

 1 + 𝑒𝑎 = (1 + 𝑒−𝑎)𝑒𝑎 

log(1 + 𝑒𝑎) = log(1 + 𝑒−𝑎) + 𝑎. 
 

Finally, the loss function becomes 
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𝐿(𝑦𝑖, 𝑦̂𝑖) = 𝐼(𝑦𝑖 = 1)log(1 + 𝑒−2𝑦̂𝑖) + 𝐼(𝑦𝑖 = −1)log(1 + 𝑒2𝑦̂𝑖) (3.23) 

and we can rewrite (3.23) as 

 
log(1 + 𝑒−2𝑦̃𝑖𝑦̂𝑖) = {

log(1 + 𝑒2𝑦̂𝑖),           𝑦𝑖 = −1

 log(1 + 𝑒−2𝑦̂𝑖), 𝑦𝑖 = 1
  

or equivalently,  

 
log(1 + 𝑒−2(2𝑦𝑖−1)𝑦̂𝑖) = {

log(1 + 𝑒2𝑦̂𝑖),           𝑦𝑖 = 0

 log(1 + 𝑒−2𝑦̂𝑖), 𝑦𝑖 = 1.
  

 The initial function 𝑓0(∙) for modeling binary labels, using the negative log-

likelihood binomial loss, is set to 0 and the initial probabilities 𝑝0(𝑥) are set to 
1

2
 (Dettling & 

Bühlmann, 2002). Instead of using the negative gradient directly as in Bühlmann and 

Hothorn’s (2007) BinomialBoosting algorithm, a Newton-type update (Friedman et al., 

2000) is used to calculate the working response as 

 
𝑧𝑖 =

𝑦𝑖 − 𝑝(𝑥𝑖)

𝑝(𝑥𝑖)(1 − 𝑝(𝑥𝑖))
,  

where the numerator is the partial derivative of the expected log-likelihood with respect to 

the update Δ(𝑦̂𝑖) (with the constant 2 omitted), 

𝜕𝐸(𝑦̂𝑖 + Δ(𝑦̂𝑖))

𝜕Δ(𝑦̂𝑖)
=
𝜕𝐸[2𝑦(𝑦̂𝑖 + Δ(𝑦̂𝑖)) − log(1 + 𝑒2(𝑦̂𝑖+Δ(𝑦̂𝑖)))]

𝜕Δ(𝑦̂𝑖)
,  

and the denominator is the second partial derivative with respect to the update Δ(𝑥) (with 

the constant -4 omitted), 

𝜕2𝐸(𝑦̂𝑖 + Δ(𝑦̂𝑖))

𝜕Δ(𝑦̂𝑖)2
=
𝜕2𝐸[2𝑦(𝑦̂𝑖 + Δ(𝑦̂𝑖)) − log(1 + 𝑒2(𝑦̂𝑖+Δ(𝑦̂𝑖)))]

𝜕Δ(𝑦̂𝑖)2
. (3.24) 
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The objective function 𝐽(∙) that needs to be minimized (Algorithm [3.2], Line 4) is a 

weighted least-squares regression of 𝑧𝑖 to 𝑥𝑖  using weights 𝑤𝑖, where 𝑤𝑖 is proportional to 

the second partial derivative in (given by the second partial derivative in (3.24), or 

 𝑤𝑖 = 𝑝(𝑥𝑖)(1 − 𝑝(𝑥𝑖)).  

In Friedman et al. (2000), the learning rate is set to 
1

2
 to make the update a true Newton 

step (Line 5; ν =
1

2
), but in the XGB implementation the learning rate is a hyperparameter 

that needs to be specified. Similar to the case with continuous labels, the L2-norm can be 

added to the objective function to help prevent overfitting and the minimization can be 

accomplished using the componentwise linear least squares variable selection procedure.  

 For tree boosters, Chen and Guestrin (2016) approximate an objective function in a 

general setting using the second order Taylor series expansion at the 𝑚th boosting 

iteration by 

𝐽(𝚯)(𝑚) =∑[𝐿(𝑦𝑖, 𝑦̂𝑖
(𝑚−1)) + 𝑔𝑖𝑓𝑚(𝐱𝑖) +

1

2
ℎ𝑖𝑓𝑚

2(𝐱𝑖)]

𝑛1

𝑖=1

+ Ω(𝑓𝑚) + 𝐶, 

where 𝑔𝑖 = 𝜕
𝑦̂𝑖
(𝑚−1)𝐿(𝑦𝑖, 𝑦̂𝑖

(𝑚−1)) and ℎ𝑖 = 𝜕
𝑦̂𝑖
(𝑚−1)
2 𝐿(𝑦𝑖, 𝑦̂𝑖

(𝑚−1)) are the first and second 

order gradient statistics of a loss function and 𝐶 is a constant term that does not involve 

𝑓𝑚(𝐱𝑖). For squared error loss 𝐿(𝑦𝑖, 𝑦̂𝑖) = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛1

𝑖=1 , the first and second order 

gradient statistics are  

𝑔𝑖 = −2(𝑦𝑖 − 𝑦̂𝑖) 

and  

ℎ𝑖 = 2 

respectively, and for the negative log-likelihood of the binomial loss 
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𝐿(𝑦𝑖, 𝑦̂𝑖) = −∑𝑦𝑖log(1 + 𝑒−𝑦̂𝑖)

𝑛1

𝑖=1

−∑(1 − 𝑦𝑖)log(1 + 𝑒𝑦̂𝑖)

𝑛1

𝑖=1

 

the first and second order gradient statistics are 

𝑔𝑖 =
𝑒𝑦̂𝑖 − 𝑦𝑖𝑒

𝑦̂𝑖 − 𝑦𝑖
1 + 𝑒𝑦̂𝑖

 

and 

ℎ𝑖 =
𝑒𝑦̂𝑖

(1 + 𝑒𝑦̂𝑖)2
, 

respectively. Omitting all constant terms not involving 𝑓𝑚(𝐱𝑖), we obtain 

 
𝐽(𝚯)(𝑚) =∑[𝑔𝑖𝑓𝑚(𝐱𝑖) +

1

2
ℎ𝑖𝑓𝑚

2(𝐱𝑖)]

𝑛1

𝑖=1

+ Ω(𝑓𝑚). (3.25) 

By reparametrizing the tree as a score within a leaf 𝑗, 𝐼𝑗 = {𝑖|𝑞(𝐱𝑖) = 𝑗}, (3.25) can be 

rewritten to include the L2-norm on the leaf scores as 

𝐽(𝚯)(𝑚) =∑[𝑔𝑖𝑤𝑗 +
1

2
ℎ𝑖𝑤𝑗

2]

𝑛1

𝑖=1

+ γ𝑀 +
1

2
λ∑𝑤𝑗

2

𝑀

𝑗=1

 

= ∑[(∑𝑔𝑖
𝑖∈𝐼𝑗

)𝑤𝑗 +
1

2
(∑ℎ𝑖
𝑖∈𝐼𝑗

+ λ)𝑤𝑗
2]

𝑀

𝑗=1

+ γ𝑀 

where 𝑤𝑗  is the score in the 𝑗th leaf, 𝑀 is the number of trees in the model, γ is the 

complexity cost by introducing an additional leaf in the model, and λ is the regularization 

hyperparameter. With a fixed structure of the tree is 𝑞(𝐱) is fixed, the derivative of 𝐽(𝚯)(𝑚) 

with respect to 𝑤𝑗  is 

 
𝜕𝐽(𝚯)(𝑚)

𝜕𝑤𝑗
=∑𝑔𝑖

𝑖∈𝐼𝑗

+ (∑ℎ𝑖
𝑖∈𝐼𝑗

+ λ)𝑤𝑗  (3.26) 



www.manaraa.com

123 

 

and therefore the optimal weight in leaf 𝑗 𝑤𝑗
∗ is given by 

 
𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+ λ

. (3.27) 

Substituting (3.27) into (3.26), we see that the optimal objective function value is 

𝐽(𝚯)(𝑚) =∑[(∑𝑔𝑖
𝑖∈𝐼𝑗

)(−
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+ λ

) +
1

2
(∑ℎ𝑖
𝑖∈𝐼𝑗

+ λ)(−
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+ λ

)

2

]

𝑀

𝑗=1

+ γ𝑀 

= −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)
2

∑ ℎ𝑖𝑖∈𝐼𝑗
+ λ

𝑀

𝑗=1

+ γ𝑀. 

This objective function measures how ‘good’ a tree structure is, with smaller scores 

indicating a better structure. Since it is normally impossible to enumerate all possible tree 

structures to optimize 𝐽(𝚯), a greedy algorithm is used that starts with a single leaf and 

iteratively adds branches to the tree (Chen & Guestrin, 2016). Specifically, for each leaf 

node of the tree, the algorithm tries to add a split and the change of objective after adding 

the split is given by the information gain  

 
𝐽(𝚯)split =

1

2
[
(∑ 𝑔𝑖𝑖∈𝐼𝐿 )

2

∑ ℎ𝑖𝑖∈𝐼𝐿 + λ
+
(∑ 𝑔𝑖𝑖∈𝐼𝑅 )

2

∑ ℎ𝑖𝑖∈𝐼𝑅 + λ
−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖𝑖∈𝐼 + λ
] − γ,  

where 𝐼 = 𝐼𝐿 ∪ 𝐼𝑅  is the union of the left and right instance sets after the split.  

 3.3.3. Application to missing data. The use of gradient boosted for imputing missing 

data is limited as far as we know. One study, however, examined the performance of using 

gradient boosting for single imputation of missing predictors in high-dimensional 

classification problems. In this study, Wang and Feng (2010) implemented boosting as a 

form of additive logistic regression and found that imputation methods based on boosting 
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outperformed naïve methods such as mean imputation in terms of both training and testing 

sensitivity, specificity, and prediction error.  

In some cases, tree boosting algorithms are implemented to handle missing values 

using a surrogate variable approach described in Hastie et al. (2009). The surrogate 

variable approach can be summarized as two steps: (1) Find the best split among predictor 

variables using only the observed observations, and (2) After choosing the best predictors 

and split point, form a list of surrogate predictors and split points that best mimic the splits 

obtained in (1). When applied to a testing data set, the surrogate splits from (2) are used in 

order if the primary splitting predictors in (1) are missing. In practice, MI has been shown 

to lead to higher predictive accuracy than the surrogate approach in CART models in part 

because MI profits from variance reductions by averaging over the 𝑀 multiply imputed 

estimates (Feelders, 1999). 

3.4. Proposed Multiple Imputation Algorithm 

The MI algorithm proposed in this study combines the Bayesian bootstrap and FCS 

MI (denoted as BB-FCS) using regularized gradient boosted models to impute missing data 

and estimate the posterior distributions of model parameters (e.g., regression coefficients; 

functions of regression coefficients [e.g., indirect effects]). With a slight change of notation, 

let 𝓓 = {𝓓obs, 𝓓mis} denote the 𝑛 × 𝑝 sample data set consisting of both observed and 

missing values. A general overview of the algorithm is as follows: 

1. Generate a Bayesian bootstrap sample from 𝓓 denoted as 𝓓∗𝑏. 

2. Create 𝑀 imputed data sets {𝓓𝑚
∗𝑏}𝑚=1

𝑀  using FCS MI with regularized gradient 

boosting machine learning models. 

3. For each of the 𝑀 imputed data sets in Step (2), estimate the regression model 
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parameters using complete-data methods and calculate the indirect effect for a total 

of 𝑀 estimates, {𝛉̂𝑚
∗𝑏}

𝑚=1

𝑀
. 

4. Calculate the point estimate of the multiply imputed indirect estimate of the data in 

Step (3) as 𝛉̅̂∗𝑏 =
1

𝑀
∑ 𝛉̂𝑚

∗𝑏𝑀
𝑚=1 . 

5. Repeat steps (1) – (4) 𝐵 times to obtain 𝐵 indirect effect estimates {𝛉̅̂∗𝑏}
𝑏=1

𝐵

. 

6. Calculate the point estimate 𝛉̅̂∗∗ using the mean 
1

𝐵
∑ 𝛉̅̂∗𝑏𝐵
𝑏=1  or median 𝑃 (𝛉̅̂∗𝑏 ≤ 𝑞) =

𝑃 (𝛉̅̂∗𝑏 ≥ 𝑞) =
1

2
, where 𝑞 is the median. Also, calculate the 100(1 − α)% confidence 

intervals with the lower limit 𝛉̅̂α/2
∗∗  as percentileα/2 (𝛉̅̂

∗𝑏∙) and upper limit 𝛉̅̂1−α/2
∗∗  as 

percentile1−α/2 (𝛉̅̂
∗𝑏∙). 

Figure (3.5) presents a graphical depiction of the algorithm described above. The  

multiply imputed estimates for each Bayesian bootstrap sample are denoted as 𝛉̅̂∗𝑏, where 

𝑏 indicates the 𝑏th Bayesian boostrapped sample. Algorithm (3.3) presents the 

pseudocode. As discussed in Chapter 2, a two-stage Bayesian bootstrapping sampling 

scheme is implemented where 𝐵 bootstrap samples are drawn of size 𝑛2 (Lines 1 and 2). 

The convergence criteria ρ in Line 9 is based on Stekhoven and Bühlmann (2012) who use 

a random forest algorithm to impute missing data. Specifically, ρ is updated as convergent 

(or true) when both the continuous imputed variables and binary imputed variables are 

greater than or equal to for the first time with respect to both variable types or the 

maximum number of iterations is reached (e.g., 5-10). Here, the difference in set of 

continuous variables 𝐂 is defined as 
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𝐹𝑖𝑔𝑢𝑟𝑒 3.5. A graphical depiction of the Bayesian bootstrapped fully-conditional 

specification multiple imputation algorithm. 

 

 
Δ𝐂 =

∑ (𝐗 new − 𝐗 old)
2

𝑗∈𝐂

∑ (𝐗 new)
2

𝑗∈𝐂

  

and for the set of binary variables 𝐃 as 

 
Δ𝐃 =

∑ 𝐼(𝐗 new ≠ 𝐗 old)𝑗∈𝐃

𝑛mis
,  

where 𝑛mis is the number of missing values in the binary variables.  

The logic behind the Bayesian bootstrap, MI combination comes from the purpose of 

inference with missing data using MI. Recall in Chapter 2, for inference in MI we are 

interested in the observed data posterior distribution of the parameters given the 

Sample 

𝓓 

𝓓∗1 

𝓓∗2 

𝓓∗𝐵 

𝛉̂1
∗1 

𝛉̂𝑀
∗1 

𝛉̂1
∗2 

𝛉̂𝑀
∗2 

𝛉̂1
∗𝐵 

𝛉̂𝑀
∗𝐵 

𝛉̅̂∗1 

𝛉̅̂∗2 

𝛉̅̂∗𝐵 

[𝛉̅̂α/2
∗∗ , 𝛉̅̂∗∗, 𝛉̅̂1−α/2

∗∗ ] 

Full  
Sample 

Bayesian 

Bootstrap 

Sampling 

Multiple 
Imputation 

Pooled 
Imputation 

Estimates 

 

Pooled 
Bayesian Bootstrap 
Point Estimate and 
100(1 − α)% CI 

  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 
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Algorithm 3.3. BB-FCS Multiple Imputation Using Gradient Boosted Learners 
Require: 𝐗𝑛×𝑝 = (𝐗obs, 𝐗mis) matrix sorted by missingness on 𝑝 columns 
  1: for 𝑏 ← 1 to 𝐵 
  2: idx ← draw Bayesian bootstrap sample of size 𝑛2 {1: 𝑛} 
  3: 𝓓∗𝑏 ← 𝐗[idx, ∶] 
  4: if all rows(𝓓∗𝑏) observed 
  5: 𝛉̂∗𝑏 ← 𝑓SEM(𝓓

∗𝑏) 
  6: else 
  7: 𝐗mis

∗𝑏 ← random draws from 𝐗obs
∗𝑏  

  8: for 𝑚 ← 1 to 𝑀 do 
  9: while not ρ do 
10: for 𝑗 ← 1 to 𝑝 do 
11: 𝒾obs ← {indices observed data in original 𝐱𝑗

∗𝑏} 

12: 𝒾mis ← {indices missing data in original 𝐱𝑗
∗𝑏} 

13: if length(𝐱𝒾mis(𝑗)
∗𝑏 ) = 0 

14: pass 
15: else 
16: 𝑓GBM

train ← Train 𝑓GBM(𝐱 𝒾obs(𝑗)
∗𝑏 | 𝐗 𝒾obs(−𝑗)

∗𝑏 )   

17: 𝓓 𝒾mis(𝑗)
∗𝑏 ← Test 𝑓GBM

train(𝐗 𝒾mis(−𝑗)
∗𝑏 ) 

18: end if 
19: end for 
20: update ρ 
21: end while  
22: 𝛉̂∗𝑏𝑚 ← 𝑓SEM(𝓓 

∗𝑏) 

23: end for  
24: 𝛉̅̂∗𝑏 ←

1

𝑀
∑ 𝛉̂∗𝑏𝑚𝑀
𝑚=1   

25: end if 
26: end for 
27: sort 𝛉̅̂∗𝑏∙ 
28: [𝛉̅̂α/2

∗∗ ← percentileα/2 (𝛉̅̂
∗𝑏) , 𝛉̅̂∗∗ ← point (𝛉̅̂∗𝑏) , 𝛉̅̂1−α/2

∗∗ ← percentile1−α/2 (𝛉̅̂
∗𝑏)]  

 
 

observed data,  

 
𝑃(𝛉|𝐗obs) = ∫𝑃(𝛉|𝐗obs, 𝐗mis)𝑃(𝐗mis|𝐗obs)𝑑𝐗mis. (3.28) 

The algorithm described above approximates (3.28). Here, 𝑃(𝐗mis|𝐗obs) is a regularized 

gradient boosted model used to create imputations 𝐗 mis of the missing data 𝐗mis. After 



www.manaraa.com

128 

 

imputations are drawn, the 𝑃(𝛉|𝐗obs, 𝐗mis) represents a complete-data method that is used 

to calculate the regression parameters and indirect effect from the pseudo-complete data. 

This process is repeated for 𝐵 Bayesian bootstrapped samples, with 𝑀 multiply imputed 

data sets in each sample, and each imputed data set a complete-data method is applied. 

Within each sample, the pooled multiple imputation estimate is one approximation to 

(3.28) and the set of 𝐵 multiple imputation estimates is the posterior distribution of the 

indirect effect we are interested in. We can calculate the point estimate of the posterior 

distribution to obtain an estimate of (2.15) and also the variance to estimate (2.16) or 

calculate confidence intervals directly.  

To account for both linear and nonlinear effects in substantive models using the 

same imputation framework, we propose using regularized gradient boosted imputation 

models in which the learners are selected based on the underlying substantive model. For 

imputing missing data in which the endogenous variable in a substantive model is 

predicted by only linear effects, we propose using linear boosters, whereas, for imputing 

missing data in which the substantive model also contains nonlinear predictors, we 

propose using tree boosters. The loss function for each gradient boosted model should be 

appropriately selected based on the data to be imputed. For instance, continuous normally 

distributed variables that contain missing data can be imputed under a squared-error loss 

and binary variables that contain missing data can be imputed under a negative log-

likelihood binomial loss.  

 To demonstrate the logic behind the choice of linear versus tree boosters, consider 

the following examples. In one extreme case, suppose we have a linear model 

 𝑌 = 1 + 1.5𝑋 + ζ𝑌,  
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where ζ𝑌 ~ 𝑁(0, 1) and all 𝑌 values above 𝑋 = 0 are missing. Figure (3.6) shows the  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.6. Scenario in which imputations are extrapolated outside the range of the 

observed data and the substantive model contains linear effects. 

 

results of linear boosters and tree boosters to predict the missing 𝑌 values above 𝑋 = 0. 

Clearly, the tree booster is inadequate in this situation because tree-based models are 

unable to extrapolate outside the range of the observed training data. Although the linear 

boosters were able to accurately capture the linear relationship between 𝑋 and 𝑌 above 

𝑋 = 0, the method as is will not be useful for multiple imputation due to its deterministic 

form. To make the predictions more stochastic, we propose two sources of randomness. 

First, stochastic subsampling is used to train a model on a random subset of the training 

data. Compared to regular gradient boosting, stochastic gradient boosting (Friedman, 

2002) has shown to be computationally more efficient and lead to more accurate 

predictions. Furthermore, Friedman found that subsampling 50% of the data resulted in 
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accurate predictions with low variance. Second, we propose adding a normal random error 

to each imputed value, where the variance of the random variable is calculated from the 

training data error variance,  

 
σ̂train
2 =

1

𝑛1
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛1

𝑖=1

,  

Note, σ̂train
2  is the maximum likelihood estimator of σtrain

2 ; we use the maximum likelihood 

estimator here to be consistent with other machine learning research (Bishop, 2006), but 

the unbiased estimator could be used here as well without loss of generality.  

 Continuing with the same example, Figure (3.7) shows the results of our  

imputation procedure with the two sources of randomness from 10 multiple imputations. 

The plot shows that the stochastic processes help generate plausible 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.7. Ten rounds of multiple imputation using a linear booster with stochastic 

subsampling and added Gaussian noise in a substantive model with linear effects. 

 

imputed values.  
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 Consider another linear model, 

 𝑌 = 1 + 0.1𝑋 + 0.9𝑋2 + ζ𝑌,  

where ζ𝑌 ~ 𝑁(0, 1) and 𝑌 is simulated to have 25% missingness based on a MCAR 

mechanism. Figure (3.8) shows the results of linear boosters and tree boosters to  

predict the missing 𝑌 values based on only 𝑋 as a feature (and a vector of ones for the 

linear booster). We can see that the linear booster based only the feature 𝑋, and not 𝑋2 is 

unable to capture the nonlinearities of 𝑌. Although this is to be expected, the purpose is to 

demonstrate how tree-based models can automatically capture nonlinearities, with and 

without explicit interaction features as input. Similar to the linear booster, we can 

introduce a form of randomness to make the predictions less deterministic for tree 

boosters. Figure (3.9) shows the results from 10 imputations using 50% subsampling. We  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.8. Scenario in which imputations are interpolated outside the range of the 

observed data and the substantive model contains nonlinear effects. 
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𝐹𝑖𝑔𝑢𝑟𝑒 3.9. Ten rounds of multiple imputation using a tree booster with stochastic 

subsampling in a substantive model with nonlinear effects. 

 

can see that the stochastic subsampling helps ensure the imputed values cover more of the 

range of missing values. Unlike the linear boosters, since tree boosters are nonparametric, 

we do not add an additional random error term to each imputed value. It is important to 

note that similar scenarios exist for linear and tree boosters for imputing missing data in 

the case when the endogenous variable is binary. 

 With regards to the mediation-type models, we demonstrate how our algorithm can  

be implemented. First, consider a simple mediation model given by  

the three equations 

1. 𝑋 = α𝑋 + 𝜁𝑋  

2. 𝑀 = α𝑀 + β𝑀∙𝑋𝑋 + 𝜁𝑀 

3. 𝑌 = α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑀𝑀 + 𝜁𝑌. 

If missing data are present on 𝑋,𝑀 and 𝑌, we propose that linear boosters should be used 
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to impute missing data, with other variables specified as features and appropriate loss 

functions selected based on variable types (i.e., we use the squared-error loss for 

continuous, normally-distributed variables and the negative log-likelihood binomial loss 

for binary variables). A more complicated case exists when the substantive model contains 

interactions, such as a moderated mediation model given by the six equations, 

1. 𝑋 = α𝑋 + 𝜁𝑋  

2. 𝑊 = α𝑊 + 𝜁𝑊 

3. 𝑋𝑊 = α𝑋𝑊 + 𝜁𝑋𝑊  

4. 𝑀𝑊 = α𝑀𝑊 + 𝜁𝑀𝑊  

5. 𝑀 = α𝑀 + β𝑀∙𝑋𝑋 + β𝑀∙𝑊𝑊+ β𝑀∙𝑋𝑊𝑋𝑊 + 𝜁𝑀  

6. 𝑌 = α𝑌 + β𝑌∙𝑋𝑋 + β𝑌∙𝑊𝑊 + β𝑌∙𝑋𝑊𝑋𝑊 + β𝑌∙𝑀𝑊𝑀𝑊 + β𝑌∙𝑀𝑀 + 𝜁𝑌. 

Currently, there is no gold standard for imputing missing data on interaction terms in 

SEMs. At best, the JAV approach appears to be the most applicable for moderated 

mediation models with continuous response variables and questionable with non-

continuous response variables (e.g., binary; Enders et al., 2014; Seaman et al., 2012; von 

Hippel, 2009). It is import to mention that the JAV approach using FCS MI can be limited 

with sparse data. For instance, consider the interaction 𝑋𝑊 and a simple, extreme case 

with 𝑛 = 5, where 𝑋 is missing values on the first two observations and 𝑊is missing values 

on the last three observations (see Figure 3.10). Using a procedure similar to MICE (van 

Buuren & Groothuis-Oudshoorn, 2011), we propose that missing values should be replaced 

by random draws of observed data for each variable. Next, iterative regression models are 

trained in which the original indices of observed data are used to subset the data as the 

training set, and the original indices of missing data are used to subset the data as the  
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id 𝑋 𝑊 𝑋𝑊 
1 ? 𝑤1 ? 
2 ? 𝑤2 ? 
3 𝑥3 ? ? 
4 𝑥4 ? ? 
5 𝑥5 ? ? 

 

𝐹𝑖𝑔𝑢𝑟𝑒 3.10. Simple scenario in which the JAV imputation method always fails because of 

sparse data on the interaction term 𝑋𝑊. 

 

testing set, where imputed values are estimated. As applied to the scenario in Figure (3.10), 

the random replacement of missing values and selection of observed and missing indices 

are summarized below: 

1. 𝑥1 and 𝑥2 are randomly replaced by draws from {𝑥3, 𝑥4, 𝑥5}. The observed indices 

are 𝑋𝒾obs = {3, 4, 5} and missing indices are 𝑋𝒾mis
= {1, 2}. 

2. 𝑤2, 𝑤3, and 𝑤4 are randomly replaced by draws from {𝑤1, 𝑤2}. The observed indices 

are 𝑊𝒾obs
= {1, 2} and missing indices are 𝑊𝒾mis

= {3, 4, 5}.  

3. 𝑋𝑊 is created as the product of the randomly replaced values in 𝑋 and 𝑊. The 

observed indices are based on the union of missing indices in both 𝑋 and 𝑊 as 

𝑋𝑊𝒾mis 
= 𝑋𝒾mis

∪𝑊𝒾mis
= {1, 2, 3, 4, 5}, whereas, the observed indices are based on 

the intersection, 𝑋𝑊𝒾obs 
= 𝑋𝒾obs ∩𝑊𝒾obs

= ∅. 

We can see that in Step (3), an imputation cannot be trained for 𝑋𝑊 because the observed 

indices are the empty set, that is, there is no ‘true’ interaction based on the original 𝑋 and 

𝑊. Although an extreme case such as this one is unlikely to occur in practice, if 𝑋 has 𝑝𝑋 

percent missing data and 𝑊 has 𝑝𝑊 percent missing data, then the interaction variable 𝑋𝑊 

will have a missingness rate 𝑝𝑋𝑊 bounded by 
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 min(𝑝𝑋, 𝑝𝑊) ≤ 𝑝𝑋𝑊 ≤ 𝑝𝑋 + 𝑝𝑊. (3.29) 

Applied to Figure (3.10), we see that 𝑝𝑋 = .4, 𝑝𝑊 = .6, and 𝑝𝑋𝑊 = 1.0.  

  Continuing with the moderated mediation model, if we have missing data on all 

variables 𝑋,𝑊,𝑀 and 𝑌 (which implies missingness on the interaction variables), we 

propose that two imputation methods, imputing only main effects (passive imputation 

[PI]) and the JAV method. For PI imputation, we recommend that linear boosters are used 

to impute missing data on 𝑋 and 𝑊, whereas tree boosters are used to impute missing data 

on 𝑀 and 𝑌. In both cases, all other variables should be used as features and appropriate 

loss functions selected based on the variable type. For the JAV method, linear boosters 

could be used to impute missing data on 𝑋,𝑊, 𝑋𝑊, and 𝑀𝑊 with all other variables as 

features and appropriate loss functions based on the variable types. Alternatively, tree 

boosters could be used to impute the interaction variables, however, the performance of 

tree boosters for imputing interaction variables is an open research question. Note, unless 

both variables in an interaction are binary, we propose using the squared-error loss 

function to impute missing values. On the contrary, since the substantive models for 𝑀 and 

𝑌 contain interactive effects, we propose that tree boosters should be used to impute 

missing data on these variables, with all other variables as features and appropriate loss 

functions.   

  Although the use of the BB with MI has been limited in research, the use of the 

nonparametric bootstrap and MI has been investigated in other studies with promising 

results. Recently, Schomaker and Heumann (2016) examined the performance of four 

different bootstrap (with percentile-based CIs) and MI methods to impute missing data in 

linear models: (1) MI then bootstrap based on pooling, (2) MI then bootstrap without 
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pooling, (3) bootstrap then MI with pooling, and (4) bootstrap then MI without pooling. 

Results of the study demonstrated that among the four methods, only the bootstrap then 

MI with pooled estimates provided efficient and randomization valid confidence intervals. 

Randomization valid here indicates that the actual confidence interval coverage equaled 

the normal confidence interval coverage.  

In a more relevant study, Wang and Wang (2014) applied a similar approach, but 

with bias-corrected confidence intervals for estimating unconditional indirect effects in 

mediation and found the method performed well under MCAR and MAR missingness 

mechanisms. Wu and Jia (2013) examined the performance of performing MI first and then 

using a nonparametric bootstrap sample within each imputed data set. Results 

demonstrated that their algorithm performed comparably to bootstrapping with FIML. 

Although the MI then bootstrap method is computationally faster than the bootstrap then 

MI approach, the underlying method is theoretically flawed. As described in Schomaker 

and Heumann (2016) and Enders et al. (2013), inferences based on the MI then bootstrap 

method are inappropriate because the empirical sampling distributions reflect the 

variation of the complete-data indirect effect estimates (i.e., the bootstrap sampling 

distributions are narrower than their missing-data counterparts). Among all these studies, 

the JM MI framework was used.  
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CHAPTER 4 

MONTE CARLO SIMULATIONS STUDIES 

 

4.1. Study 1 

 4.1.1. Method. Despite its similarity to the nonparametric bootstrap, little research 

has examined the performance of the Bayesian bootstrap (BB) for indirect effects analysis. 

The first purpose of the current study is fill this gap, that is, to empirically examine the 

performance of the BB for estimating and testing unconditional and conditional indirect 

effects. A Monte Carlo (MC) simulation study is conducted to examine: (1) biases, (2) mean 

squared errors (MSEs), (3) confidence interval coverage probabilities, (4) length of 

confidence intervals, and (5) Type I error/power rates of the BB for estimating and testing 

indirect effects under different conditions. For comparison, the relative performance of the 

BB is compared to that of some conventional methods, including the nonparametric 

bootstrap with bias-corrected confidence intervals (current best practice), first-order 

standard errors, and second-order standard errors. For both Bayesian (both stage one and 

stage two sampling) and nonparametric bootstrapping, 1,000 bootstrap samples are used. 

All parameters are estimated with ML and α is set to .05 to generate 95% confidence 

intervals or credible intervals for BB. Note, we refer to both frequentist confidence 

intervals and Bayesian credible intervals as confidence intervals (CIs) to keep language 

similar in text, tables, and figures. However, with BB, the CIs reflect credible intervals. For 

BB, the mean and median indirect effect estimates are computed for comparisons (Wang & 

Preacher, 2015). Three sample sizes of 100, 500, and 1,000 are chosen to represent small, 
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medium, and large sample sizes for mediation and moderated mediation models, 

respectively.  

 For simulating data, two models are considered. First, a simple mediation model 

(see Figure [1.2]), 

 
[
𝑋
𝑀
𝑌
] = [

α𝑋
α𝑀
α𝑌
] + [

0 0 0
β𝑀∙𝑋 0 0
β𝑌∙𝑋 β𝑌∙𝑀 0

] [
𝑋
𝑀
𝑌
] + [

ζ𝑋
𝜁𝑀
𝜁𝑌

],  

and second, a moderated mediation model given in Figure (1.4) Model 5, 

[
 
 
 
 
 
𝑋
𝑊
𝑋𝑊
𝑀𝑊
𝑀
𝑌 ]

 
 
 
 
 

=

[
 
 
 
 
 
α𝑋
α𝑊
α𝑋𝑊
α𝑀𝑊
α𝑀
α𝑌 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

β𝑀∙𝑋 β𝑀∙𝑊 β𝑀∙𝑋𝑊 0 0 0
β𝑌∙𝑋 β𝑌∙𝑊 β𝑌∙𝑋𝑊 β𝑌∙𝑀𝑊 β𝑌∙𝑀 0]

 
 
 
 
 

[
 
 
 
 
 
𝑋
𝑊
𝑋𝑊
𝑀𝑊
𝑀
𝑌 ]

 
 
 
 
 

+

[
 
 
 
 
 
𝜁𝑋
𝜁𝑊
𝜁𝑋𝑊
𝜁𝑀𝑊
𝜁𝑀
𝜁𝑌 ]

 
 
 
 
 

. 

For all models, four combination of variables types are used for the mediator variable 𝑀 

and endogenous variable 𝑌: (1) continuous 𝑀, continuous 𝑌, (2), continuous 𝑀, binary 𝑌, 

(3) binary 𝑀, continuous 𝑌, and (4) binary 𝑀, binary 𝑌. Using the generalized linear model 

framework, a linear regression is used to model continuous variables and a logistic 

regression is used to model binary variables.  

 All regression parameters are simulated with four different combinations of effect 

sizes (null = .00, small = .14, medium = .39, large = .59; Cohen, 1988) and only true 

indirect effects are simulated (Preacher et al., 2007). Exogenous variables are simulated to 

have normal distributions with zero mean and unit variance. Mediator and endogenous 

variables are simulated based on linear combinations described by the four different 

combinations of effect sizes. For continuous mediator and/or endogenous variables, the 

errors are simulated to have normal distributions with zero mean and unit variance. For 
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binary mediator and/or endogenous variables, the linear combination 𝛈 that are used to 

simulate the variable will be converted into a probability using the logit transformation as 

 
𝑃(𝑀 = 1|𝛈𝑀, 𝛉𝑀) =

1

1 + exp(−𝛈𝑀)
 (4.1) 

and  

 
𝑃(𝑌 = 1|𝛈𝑌, 𝛉𝑌) =

1

1 + exp(−𝛈𝑌)
 (4.2) 

for the mediator and endogenous variable models, respectively. Then, the probabilities in 

(4.1) and (4.2) are used as the success probability for which random draws from a 

Binomial distribution are sampled using one trial (i.e., to simulate a 0/1 response). Similar 

to other studies (Preacher et al., 2007; Preacher & Wang, 2015), the conditional indirect 

effects from the moderated mediation model is tested at a value of +1 (i.e., approximately 1 

standard deviation above the mean) on the moderator variable. The simulation consists of 

2 (types of models) x 4 (mediator and endogenous variable type combinations) x 3 (sample 

sizes) x 4 (regression coefficient effect sizes) = 96 unique conditions. To help combat the 

effects of MC error, 10,000 replications are simulated per condition (Koehler, Brown, & 

Haneuse, 2009).  

It is important to note that in this simulation study (and the next simulation study), 

parameters are fixed and only the data are resampled or generated. As such, the 

simulations are conducted from a frequentist perspective, which parallels previous 

research in this area (e.g., Enders et al., 2014; Yuan & MacKinnon, 2009; Wang & Preacher, 

2015). As Yuan and MacKinnon (2009, p. 10) note, it is of interest to evaluate the 

performance of any Bayesian analysis from the frequentist point of view because provided 
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that the Bayesian model is correctly specified, Bayesian estimates are consistent and 

credible intervals have exact nominal coverage rates regardless of sample size.   

Let γ denote the true indirect effect and γ̂𝑖 denote the estimated indirect effect for 

the 𝑖th replicate, then to evaluate the performance of the studied methods, the empirical 

bias (EB) is calculated as 

 

EB =

{
 
 

 
 100 [

∑ γ̂𝑖
𝑇
𝑖=1

𝑇γ
− 1] , γ ≠ 0

∑ γ̂𝑖
𝑇
𝑖=1

𝑇
− γ, γ = 0

  

where 𝑇 is the total number of replications per condition. Unbiased estimates should have 

EB estimates around zero. MSE is calculated as 

 
MSE =

1

𝑇
∑ (γ̂𝑖 − γ)2

𝑇

𝑖=1
.  

For MSE estimates, the lower the estimate the better the performance. Let 𝐿𝐿̂𝑖  and 𝑈𝐿̂𝑖 

denote the estimated lower and upper limits of a 95% CI of γ in the 𝑖th replicate, then the 

coverage probability (CP) is calculated as 

 
CP =

1

𝑇
∑ 𝐼

𝑇

𝑖=1
(𝐿𝐿̂𝑖 < γ < 𝑈𝐿̂𝑖),  

where 𝐼(𝐿𝐿̂𝑖 < γ < 𝑈𝐿̂𝑖) is the indicator function defined as 

 
𝐼(𝐿𝐿̂𝑖 < γ < 𝑈𝐿̂𝑖) = {

1, γ ∈ (𝐿𝐿̂𝑖, 𝑈𝐿̂𝑖)

0, γ ∉ (𝐿𝐿̂𝑖, 𝑈𝐿̂𝑖)
.  

At α = .05, CP should be approximately .95. Confidence interval length (CIL) is calculated 

as 

 
CIL =

1

𝑇
∑ |𝑈𝐿̂𝑖 − 𝐿𝐿̂𝑖|

𝑇

𝑖=1
.  
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For CIL estimates, assuming other metrics are constant, the narrower the interval the 

better. Lastly, the rejection rate (RR) is calculated as 

 
RR =

1

𝑇
∑ 𝐼 ((𝐿𝐿̂𝑖 > 0) ⋁ 𝐼(𝑈𝐿̂𝑖 < 0))

𝑇

𝑖=1
,  

where 𝐼 ((𝐿𝐿̂𝑖 > 0) ⋁ 𝐼(𝑈𝐿̂𝑖 < 0)) is the indicator function defined as 

 
𝐼 ((𝐿𝐿̂𝑖 > 0) ⋁ 𝐼(𝑈𝐿̂𝑖 < 0)) = {

1, 0 ∉ (𝐿𝐿̂𝑖 , 𝑈𝐿̂𝑖)

0, 0 ∈ (𝐿𝐿̂𝑖 , 𝑈𝐿̂𝑖)
. (4.3) 

Here, when γ = 0, (4.3) is the Type I Error rate, and when γ ≠ 0, (4.3) is the power. When 

γ = 0, RR should be .05 or less (for conservative estimates), whereas, when γ ≠ 0, higher 

RR indicate higher empirical power.  

 Given that the point estimate of the BC bootstrap is based on the sample data, as 

opposed to the bootstrapped distribution, empirical biases and MSEs are equivalent for the 

BC bootstrap and delta methods. Despite this fact, however, we report empirical biases and 

MSEs results for each method to keep reporting consistent with Study 2.  

4.1.2. Results: Mediation models. Results of the MC simulation for a mediation model 

with continuous mediator and endogenous variables are displayed in Table 4.1. As can be 

seen in the table, all methods are relatively unbiased. The BB with median estimator, 

however, tends to underestimate the true indirect effect with small effect sizes (i.e., effect = 

.14). For confidence interval lengths, all methods have similar lengths with null and small 

(i.e., effect = .14) effect sizes. The BB methods have slightly wider intervals than other 

methods at medium (i.e., effect = .39) and large (i.e., effect = .59) effect sizes in both 

medium (𝑛 = 500) and large (𝑛 = 1000) sample sizes. Across all conditions, the BB 

methods have approximately nominal coverage rates (i.e., 95%) or higher. For small effect 
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Table 4.1 
Mediation Model Metrics – Mediator Continuous, Endogenous Continuous 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

Delta-1 .00 0.000 0.000 0.000 0.050 0.001 0.005 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Delta-1 .14 0.027 0.000 0.003 0.091 0.036 0.025 0.912 0.925 0.936 0.019 0.580 0.968 0.001 0.000 0.000 
Delta-1 .39 0.007 0.002 0.001 0.224 0.097 0.069 0.934 0.950 0.949 0.866 1.000 1.000 0.003 0.001 0.000 
Delta-1 .59 0.001 -0.001 0.001 0.335 0.147 0.104 0.944 0.945 0.953 1.000 1.000 1.000 0.007 0.001 0.001 

                 
Delta-2 .00 0.000 0.000 0.000 0.066 0.013 0.007 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Delta-2 .14 0.027 0.000 0.003 0.101 0.037 0.025 0.992 0.935 0.940 0.015 0.542 0.963 0.001 0.000 0.000 
Delta-2 .39 0.007 0.002 0.001 0.228 0.098 0.069 0.940 0.951 0.949 0.850 1.000 1.000 0.003 0.001 0.000 
Delta-2 .59 0.001 -0.001 0.001 0.338 0.147 0.104 0.946 0.945 0.953 1.000 1.000 1.000 0.007 0.001 0.001 

                 
BC-Boot .00 0.000 0.000 0.000 0.075 0.015 0.007 0.992 0.995 0.994 0.008 0.005 0.006 0.000 0.000 0.000 
BC-Boot .14 0.027 0.000 0.003 0.108 0.037 0.026 0.913 0.955 0.952 0.134 0.824 0.988 0.001 0.000 0.000 
BC-Boot .39 0.007 0.002 0.001 0.231 0.098 0.069 0.949 0.951 0.951 0.950 1.000 1.000 0.003 0.001 0.000 
BC-Boot .59 0.001 -0.001 0.001 0.338 0.146 0.103 0.947 0.943 0.948 1.000 1.000 1.000 0.007 0.001 0.001 

                 
Bayes-1 .00 0.000 0.000 0.000 0.071 0.019 0.012 0.998 1.000 1.000 0.002 0.000 0.000 0.000 0.000 0.000 
Bayes-1 .14 0.025 0.000 0.003 0.104 0.045 0.036 0.966 0.979 0.993 0.067 0.552 0.885 0.001 0.000 0.000 
Bayes-1 .39 0.007 0.002 0.001 0.228 0.118 0.097 0.944 0.982 0.994 0.922 1.000 1.000 0.003 0.001 0.000 
Bayes-1 .59 0.001 -0.001 0.000 0.338 0.178 0.146 0.946 0.981 0.993 1.000 1.000 1.000 0.007 0.001 0.001 

                 
Bayes-2 .00 0.000 0.000 0.000 0.071 0.019 0.012 0.998 1.000 1.000 0.002 0.000 0.000 0.000 0.000 0.000 
Bayes-2 .14 -0.106 -0.065 -0.044 0.104 0.044 0.036 0.965 0.979 0.992 0.069 0.557 0.885 0.000 0.000 0.000 
Bayes-2 .39 -0.024 -0.008 -0.005 0.228 0.118 0.097 0.945 0.982 0.994 0.921 1.000 1.000 0.003 0.001 0.000 
Bayes-2 .59 -0.012 -0.005 -0.002 0.338 0.178 0.146 0.949 0.979 0.994 1.000 1.000 1.000 0.007 0.001 0.001 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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sizes in sample sizes, however, both the first-order delta method and BC bootstrap have 

lower than nominal coverage rates (i.e., 95%). Similarly, for small effects in medium 

sample sizes, both delta methods have slightly less than nominal coverage rates; other 

conditions achieve approximately nominal coverage rates for each method. For each 

method, Type I Error rates are well below nominal rates (i.e., 5%). In regards to power, 

with larger effect sizes in larger samples, all methods generally have similar performance. 

For small effect sizes, however, the BC bootstrap has highest power across all sample sizes, 

whereas, the BB methods have slightly higher power than delta methods in small samples; 

in large samples, the delta methods have higher power than the BB methods. The mean 

squared errors (MSEs) are approximately similar across all methods and conditions. 

Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a mediation model with continuous mediator 

variable and categorical endogenous variable are displayed in Table 4.2. With regards to 

empirical bias, all methods are biased in small sample sizes with non-null effect sizes. For 

other conditions examined, however, all methods aside from the BB with median estimator 

are relatively unbiased. Similar to the previous simulation results, the BB with median 

estimator tends to underestimate the true indirect effect with small effect sizes in medium 

and large sample sizes. The   confidence interval lengths are slightly wider for the BB 

methods with medium and large effect sizes at larger sample sizes, whereas narrower than 

the BC bootstrap in small sample sizes.  

With regards to coverage probabilities, the second-order delta method and the BB 

methods have approximately nominal or higher coverage levels, with the BB methods 

having slightly higher coverage levels. For small samples, the BC bootstrap has slightly
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Table 4.2 
Mediation Model Metrics – Mediator Continuous, Endogenous Categorical 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.000 0.000 0.000 0.105 0.020 0.010 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Delta-1 .14 0.063 0.005 0.000 0.160 0.058 0.040 0.966 0.934 0.937 0.003 0.140 0.472 0.002 0.000 0.000 
Delta-1 .39 0.058 0.010 0.005 0.385 0.162 0.114 0.943 0.951 0.948 0.282 0.989 1.000 0.010 0.002 0.001 
Delta-1 .59 0.049 0.010 0.006 0.607 0.259 0.182 0.947 0.947 0.949 0.720 1.000 1.000 0.027 0.004 0.002 

                 
Delta-2 .00 0.000 0.000 0.000 0.137 0.026 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Delta-2 .14 0.063 0.005 0.000 0.184 0.060 0.041 0.999 0.950 0.944 0.001 0.120 0.446 0.002 0.000 0.000 
Delta-2 .39 0.058 0.010 0.005 0.395 0.163 0.114 0.952 0.953 0.949 0.256 0.988 1.000 0.010 0.002 0.001 
Delta-2 .59 0.049 0.010 0.006 0.614 0.260 0.182 0.950 0.947 0.949 0.707 1.000 1.000 0.027 0.004 0.002 

                 
BC-Boot .00 0.000 0.000 0.000 0.170 0.030 0.015 0.994 0.994 0.995 0.007 0.007 0.005 0.000 0.000 0.000 
BC-Boot .14 0.063 0.005 0.000 0.219 0.063 0.042 0.933 0.942 0.950 0.059 0.384 0.642 0.002 0.000 0.000 
BC-Boot .39 0.058 0.010 0.005 0.445 0.166 0.115 0.940 0.947 0.948 0.560 0.993 1.000 0.010 0.002 0.001 
BC-Boot .59 0.049 0.010 0.006 0.688 0.264 0.183 0.927 0.941 0.947 0.835 1.000 1.000 0.027 0.004 0.002 

                 
Bayes-1 .00 0.000 0.000 0.000 0.159 0.038 0.024 0.998 1.000 1.000 0.002 0.000 0.000 0.001 0.000 0.000 
Bayes-1 .14 0.119 0.021 0.010 0.206 0.077 0.059 0.989 0.980 0.993 0.022 0.130 0.255 0.002 0.000 0.000 
Bayes-1 .39 0.115 0.024 0.015 0.427 0.201 0.163 0.954 0.984 0.994 0.439 0.970 0.999 0.011 0.002 0.001 
Bayes-1 .59 0.107 0.025 0.016 0.662 0.320 0.259 0.948 0.980 0.994 0.776 1.000 1.000 0.031 0.005 0.002 

                 
Bayes-2 .00 0.000 0.000 0.000 0.159 0.038 0.024 0.998 1.000 1.000 0.002 0.000 0.000 0.000 0.000 0.000 
Bayes-2 .14 -0.069 -0.084 -0.068 0.206 0.076 0.059 0.988 0.980 0.994 0.022 0.132 0.252 0.001 0.000 0.000 
Bayes-2 .39 0.049 0.005 0.002 0.427 0.201 0.163 0.956 0.984 0.994 0.440 0.969 0.999 0.010 0.002 0.001 
Bayes-2 .59 0.068 0.015 0.009 0.662 0.321 0.259 0.948 0.980 0.994 0.777 1.000 1.000 0.029 0.005 0.002 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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lower than nominal coverage rates for non-null effects; other conditions the method 

achieves approximately nominal coverage levels. Similarly, in small samples, the first-order 

delta method has lower than nominal coverage levels for small effects; this method 

achieves nominal coverage in other conditions. In terms of Type I error rates, all methods 

have lower than nominal coverage. For empirical power, the bootstrap methods 

outperform the delta methods in small sample sizes, with the BC bootstrap having the 

highest power. In larger samples with small effect sizes, the BC bootstrap has the highest 

power; in large samples the delta methods have higher power than the BB methods. Power 

in other conditions are similar across methods. All methods have comparable MSEs. 

Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a mediation model with categorical mediator 

variable and continuous endogenous variable are displayed in Table 4.3. In small sample 

sizes with non-null effects, all methods are biased except for the BB with median estimator 

at large effects. On the contrary, for medium and large sample sizes, all methods are 

relatively unbiased except for the BB with median estimator at small effect sizes. In small 

samples, the delta methods have the narrowest confidence interval lengths, whereas, the 

BC bootstrap has the widest. For medium to large sample sizes, the BB methods have 

slightly wider confidence intervals than the BC bootstrap and delta methods, which are 

approximately similar. In terms of coverage probabilities, the BB methods have the highest 

coverage rates across conditions, whereas the first-order delta method has the lowest 

coverage rate across conditions. The second-order delta method has higher power than the 

BC bootstrap and first-order delta method in for smaller effect sizes and approximately 

similar power at medium and large effect sizes.  
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Table 4.3 
Mediation Model Metrics – Mediator Categorical, Endogenous Continuous 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.000 0.000 0.000 0.206 0.040 0.020 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
Delta-1 .14 0.053 0.018 -0.001 0.255 0.078 0.052 0.983 0.906 0.908 0.001 0.026 0.141 0.004 0.000 0.000 
Delta-1 .39 0.037 0.010 0.008 0.503 0.205 0.144 0.911 0.937 0.950 0.055 0.952 1.000 0.017 0.003 0.001 
Delta-1 .59 0.032 0.006 0.004 0.758 0.321 0.225 0.923 0.947 0.945 0.355 1.000 1.000 0.038 0.007 0.003 

                 
Delta-2 .00 0.000 0.000 0.000 0.271 0.052 0.026 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
Delta-2 .14 0.053 0.018 -0.001 0.312 0.085 0.055 1.000 0.965 0.929 0.000 0.021 0.119 0.004 0.000 0.000 
Delta-2 .39 0.037 0.010 0.008 0.536 0.208 0.145 0.943 0.942 0.952 0.041 0.944 1.000 0.017 0.003 0.001 
Delta-2 .59 0.032 0.006 0.004 0.783 0.323 0.226 0.934 0.949 0.946 0.317 1.000 1.000 0.038 0.007 0.003 

                 
BC-Boot .00 0.000 0.000 0.000 0.330 0.060 0.030 0.993 0.994 0.995 0.007 0.006 0.006 0.002 0.000 0.000 
BC-Boot .14 0.053 0.018 -0.001 0.375 0.093 0.057 0.980 0.927 0.954 0.026 0.175 0.452 0.004 0.000 0.000 
BC-Boot .39 0.037 0.010 0.008 0.616 0.215 0.147 0.939 0.952 0.953 0.324 0.987 1.000 0.017 0.003 0.001 
BC-Boot .59 0.032 0.006 0.004 0.887 0.330 0.228 0.950 0.950 0.947 0.744 1.000 1.000 0.038 0.007 0.003 

                 
Bayes-1 .00 0.000 0.000 0.000 0.313 0.076 0.047 0.999 1.000 1.000 0.001 0.000 0.000 0.002 0.000 0.000 
Bayes-1 .14 0.099 0.031 0.007 0.354 0.112 0.082 0.995 0.995 0.993 0.007 0.029 0.055 0.004 0.000 0.000 
Bayes-1 .39 0.081 0.022 0.016 0.578 0.256 0.205 0.955 0.980 0.995 0.173 0.935 0.999 0.019 0.003 0.001 
Bayes-1 .59 0.076 0.018 0.012 0.833 0.396 0.321 0.954 0.982 0.994 0.594 1.000 1.000 0.042 0.007 0.003 

                 
Bayes-2 .00 0.000 0.000 0.000 0.313 0.076 0.047 0.999 1.000 1.000 0.001 0.000 0.000 0.001 0.000 0.000 
Bayes-2 .14 -0.124 -0.150 -0.148 0.354 0.112 0.082 0.996 0.996 0.993 0.008 0.027 0.054 0.003 0.000 0.000 
Bayes-2 .39 -0.039 -0.020 -0.013 0.578 0.256 0.205 0.956 0.982 0.995 0.178 0.935 0.999 0.017 0.003 0.001 
Bayes-2 .59 0.003 -0.004 -0.003 0.833 0.396 0.321 0.954 0.982 0.994 0.591 1.000 1.000 0.040 0.007 0.003 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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Similar to previous results, all methods have lower than nominal Type I Error rates. 

The BC bootstrap has higher power relative to other methods at larger effects in small 

samples and at small effects in larger samples. The BB methods have higher power than the 

delta methods in small samples with larger effect sizes; the delta methods have higher 

power than the BB methods in large samples at small effect sizes. Power across other 

conditions and methods is comparable. All methods have comparable MSEs in the 

conditions examined. Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a mediation model with categorical mediator 

variable and categorical endogenous variable are displayed in Table 4.4. In small sample 

sizes, the BB with median estimator is the least biased method for non-null effects; the 

median estimator is slightly biased for small and large effect sizes. In larger samples, 

however, the BB with median estimator is biased for small and medium effects. Other 

methods are relatively unbiased for effects in medium and large samples. In terms of 

confidence interval lengths, results echo previous findings such that in small samples, the 

BC bootstrap has the widest intervals and the delta methods have the narrowest intervals. 

Moreover, in medium and large samples, the BB methods have slightly wider intervals than 

other methods.  

The BB methods have the highest coverage probabilities across all non-null effect 

sizes examined. The BC bootstrap has lower than nominal coverage probabilities in small 

samples with medium and large effect sizes, whereas, in medium and large sample sizes, 

coverage rates are below nominal levels for small effect sizes. The second-order delta 

method generally has higher coverage rates than the first-order delta method. All methods 

have lower than nominal Type I Error rates. With regards to power, in small samples the
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Table 4.4 
Mediation Model Metrics – Mediator Categorical, Endogenous Categorical 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.001 0.000 0.000 0.420 0.081 0.040 1.000 1.000 1.000 0.000 0.000 0.000 0.008 0.000 0.000 
Delta-1 .14 0.153 0.010 0.010 0.490 0.132 0.085 0.996 0.953 0.922 0.000 0.005 0.030 0.013 0.001 0.000 
Delta-1 .39 0.082 0.016 -0.003 0.859 0.328 0.227 0.944 0.943 0.942 0.011 0.423 0.818 0.051 0.007 0.003 
Delta-1 .59 0.075 0.002 0.006 1.265 0.508 0.356 0.930 0.945 0.946 0.064 0.841 0.992 0.113 0.017 0.008 

                 
Delta-2 .00 0.001 0.000 0.000 0.553 0.106 0.052 1.000 1.000 1.000 0.000 0.000 0.000 0.008 0.000 0.000 
Delta-2 .14 0.153 0.010 0.010 0.612 0.149 0.092 1.000 0.999 0.971 0.000 0.004 0.023 0.013 0.001 0.000 
Delta-2 .39 0.082 0.016 -0.003 0.942 0.335 0.229 0.998 0.950 0.944 0.008 0.397 0.808 0.051 0.007 0.003 
Delta-2 .59 0.075 0.002 0.006 1.331 0.513 0.358 0.950 0.947 0.947 0.051 0.834 0.991 0.113 0.017 0.008 

                 
BC-Boot .00 0.001 0.000 0.000 0.711 0.122 0.060 0.992 0.994 0.995 0.008 0.006 0.005 0.008 0.000 0.000 
BC-Boot .14 0.153 0.010 0.010 0.778 0.165 0.098 0.984 0.931 0.922 0.018 0.069 0.173 0.013 0.001 0.000 
BC-Boot .39 0.082 0.016 -0.003 1.160 0.351 0.234 0.913 0.948 0.946 0.136 0.634 0.874 0.051 0.007 0.003 
BC-Boot .59 0.075 0.002 0.006 1.615 0.532 0.363 0.922 0.948 0.941 0.334 0.894 0.994 0.113 0.017 0.008 

                 
Bayes-1 .00 0.001 0.000 0.000 0.667 0.155 0.095 0.999 1.000 1.000 0.001 0.000 0.000 0.009 0.000 0.000 
Bayes-1 .14 0.240 0.032 0.024 0.730 0.204 0.144 0.998 0.998 0.999 0.003 0.006 0.007 0.015 0.001 0.000 
Bayes-1 .39 0.167 0.037 0.011 1.085 0.423 0.331 0.979 0.983 0.993 0.054 0.373 0.584 0.060 0.007 0.004 
Bayes-1 .59 0.162 0.024 0.020 1.508 0.642 0.514 0.954 0.983 0.994 0.187 0.763 0.948 0.135 0.018 0.009 

                 
Bayes-2 .00 0.001 0.000 0.000 0.667 0.155 0.096 0.999 1.000 1.000 0.001 0.000 0.000 0.006 0.000 0.000 
Bayes-2 .14 -0.022 -0.188 -0.186 0.730 0.204 0.144 0.997 0.998 0.999 0.003 0.007 0.008 0.010 0.001 0.000 
Bayes-2 .39 0.000 -0.030 -0.036 1.085 0.423 0.331 0.979 0.984 0.993 0.053 0.372 0.585 0.049 0.007 0.003 
Bayes-2 .59 0.047 -0.013 -0.005 1.509 0.643 0.514 0.952 0.984 0.995 0.191 0.762 0.947 0.117 0.017 0.008 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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BC bootstrap has the highest power for non-null effects, whereas, the delta methods have 

the lowest power for non-null effects. In medium sample sizes, the BC bootstrap has higher 

power than the BB methods and delta methods; the delta methods have slightly higher 

power than the BB methods. In large samples with small effect sizes, the BC bootstrap has 

higher power than other methods. Interestingly, in large samples the BB methods have 

lower power than other methods with medium effect sizes. All methods have 

approximately similar MSEs. Supplemental figures for the results are presented in 

Appendix C. 

4.1.3. Results: Moderated mediation models. Results of the MC simulation for a 

moderated mediation model with continuous mediator and continuous endogenous 

variable are displayed in Table 4.5. As can be seen in the table, except for the BB with 

median estimator with smaller effect sizes in smaller samples, all methods are relatively 

unbiased. In terms of confidence interval lengths, all methods have approximately similar 

lengths in small samples, but the BB methods have slightly wider intervals in medium and 

large sample sizes. In small samples, the first-order delta method has considerably lower 

coverage than the other methods for small effect sizes, all of which have below nominal 

coverage levels; at medium and large effects, all methods have approximately nominal 

coverage rates, with slightly lower rates for BB methods. In medium and large sample sizes, 

all methods have approximately nominal or higher coverage rates, with BB methods having 

the highest coverage. All methods have lower than nominal Type I Error rates. In terms of 

power, the bootstrap methods outperform the delta methods in small samples with small 

effect sizes; in all other conditions the methods have approximately similar power.  
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Table 4.5 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Continuous 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.000 0.000 0.000 0.110 0.020 0.010 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
Delta-1 .14 0.000 0.001 -0.001 0.246 0.100 0.070 0.901 0.937 0.941 0.087 0.965 1.000 0.004 0.001 0.000 
Delta-1 .39 0.002 0.002 0.000 0.623 0.264 0.185 0.944 0.949 0.950 0.996 1.000 1.000 0.025 0.005 0.002 
Delta-1 .59 -0.001 0.001 0.000 0.907 0.388 0.272 0.940 0.949 0.952 1.000 1.000 1.000 0.057 0.010 0.005 

                 
Delta-2 .00 0.000 0.000 0.000 0.145 0.027 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
Delta-2 .14 0.000 0.001 -0.001 0.263 0.101 0.070 0.933 0.941 0.942 0.073 0.959 1.000 0.004 0.001 0.000 
Delta-2 .39 0.002 0.002 0.000 0.628 0.264 0.185 0.945 0.949 0.951 0.995 1.000 1.000 0.025 0.005 0.002 
Delta-2 .59 -0.001 0.001 0.000 0.910 0.388 0.272 0.940 0.949 0.952 1.000 1.000 1.000 0.057 0.010 0.005 

                 
BC-Boot .00 0.000 0.000 0.000 0.173 0.030 0.015 0.994 0.994 0.995 0.006 0.007 0.005 0.001 0.000 0.000 
BC-Boot .14 0.000 0.001 -0.001 0.284 0.102 0.070 0.932 0.953 0.950 0.290 0.990 1.000 0.004 0.001 0.000 
BC-Boot .39 0.002 0.002 0.000 0.645 0.264 0.185 0.947 0.948 0.949 0.997 1.000 1.000 0.025 0.005 0.002 
BC-Boot .59 -0.001 0.001 0.000 0.932 0.387 0.271 0.939 0.948 0.949 1.000 1.000 1.000 0.057 0.010 0.005 

                 
Bayes-1 .00 0.000 0.000 0.000 0.148 0.037 0.023 0.997 1.000 1.000 0.003 0.000 0.000 0.001 0.000 0.000 
Bayes-1 .14 -0.001 0.001 -0.001 0.257 0.121 0.098 0.928 0.979 0.993 0.226 0.950 0.999 0.004 0.001 0.000 
Bayes-1 .39 0.002 0.002 0.000 0.612 0.318 0.260 0.937 0.981 0.992 0.997 1.000 1.000 0.026 0.005 0.002 
Bayes-1 .59 -0.001 0.001 0.000 0.892 0.466 0.382 0.929 0.980 0.993 1.000 1.000 1.000 0.057 0.010 0.005 

                 
Bayes-2 .00 0.000 0.000 0.000 0.148 0.037 0.023 0.998 1.000 1.000 0.002 0.000 0.000 0.000 0.000 0.000 
Bayes-2 .14 -0.086 -0.033 -0.024 0.257 0.121 0.098 0.929 0.979 0.993 0.225 0.949 0.999 0.004 0.001 0.000 
Bayes-2 .39 -0.011 -0.002 -0.003 0.612 0.318 0.260 0.938 0.982 0.994 0.998 1.000 1.000 0.026 0.005 0.002 
Bayes-2 .59 -0.007 -0.001 -0.001 0.891 0.466 0.381 0.929 0.981 0.994 1.000 1.000 1.000 0.057 0.010 0.005 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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Furthermore, MSEs are approximately similar for all methods in each condition. 

Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a moderated mediation model with continuous 

mediator variable and categorical endogenous variable are displayed in Table 4.6. In small 

samples, all methods are highly biased for non-null effects. In medium sample sizes, BB 

methods tend to be slightly more biased than delta methods. For larger samples, however, 

this difference still exists, but to a smaller extent; the BB with median estimator has lower 

biases than mean estimator. With regards to confidence interval lengths, in small samples 

the BC bootstrap has the widest intervals, whereas, the delta methods have the smallest 

intervals. In medium and large sample sizes, the BB methods have slightly wider intervals 

than other methods.  

In small samples, the BC bootstrap has lower than nominal coverage rates as effect 

size increases. Surprisingly, the delta methods obtain nominal coverage rates or higher 

across all conditions, whereas, the BB methods also obtain nominal coverage rates or 

higher across all conditions except in small samples with medium and large effects. All 

methods have lower than nominal Type I Error rates. For power in small samples, the 

bootstrap methods outperform the delta methods, especially at medium effect sizes. In 

medium sample sizes, the BC bootstrap obtains higher power with small effects; the power 

for all other effects are similar across methods. Moreover, the power is similar across 

methods large sample sizes at medium and large effects; at small effect sizes the BB 

methods have lower power than other methods. With regards to MSEs, in small samples, 

the MSEs for the bootstrap methods are higher than the delta methods for large effects,  

with the BC bootstrap having the most variability. All other MSEs are similar across
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Table 4.6 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Categorical 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.000 0.000 0.000 0.241 0.041 0.020 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
Delta-1 .14 0.165 0.030 0.013 0.458 0.165 0.114 0.947 0.943 0.945 0.012 0.462 0.849 0.015 0.002 0.001 
Delta-1 .39 0.142 0.025 0.013 1.278 0.510 0.356 0.949 0.952 0.946 0.602 1.000 1.000 0.129 0.017 0.009 
Delta-1 .59 0.148 0.029 0.015 2.259 0.900 0.628 0.958 0.952 0.950 0.917 1.000 1.000 0.430 0.056 0.026 

                 
Delta-2 .00 0.000 0.000 0.000 0.314 0.054 0.026 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
Delta-2 .14 0.165 0.030 0.013 0.502 0.169 0.115 0.996 0.951 0.949 0.008 0.437 0.843 0.015 0.002 0.001 
Delta-2 .39 0.142 0.025 0.013 1.297 0.511 0.356 0.953 0.953 0.946 0.579 1.000 1.000 0.129 0.017 0.009 
Delta-2 .59 0.148 0.029 0.015 2.275 0.901 0.628 0.960 0.952 0.950 0.915 1.000 1.000 0.430 0.056 0.026 

                 
BC-Boot .00 0.000 0.000 0.000 0.458 0.064 0.031 0.991 0.993 0.994 0.009 0.007 0.006 0.003 0.000 0.000 
BC-Boot .14 0.165 0.030 0.013 0.684 0.179 0.119 0.907 0.946 0.948 0.142 0.664 0.895 0.015 0.002 0.001 
BC-Boot .39 0.142 0.025 0.013 1.740 0.532 0.363 0.894 0.940 0.937 0.809 1.000 1.000 0.129 0.017 0.009 
BC-Boot .59 0.148 0.029 0.015 3.263 0.941 0.640 0.852 0.926 0.936 0.970 1.000 1.000 0.430 0.056 0.026 

                 
Bayes-1 .00 0.000 0.000 0.000 0.375 0.079 0.049 0.998 1.000 1.000 0.002 0.000 0.000 0.003 0.000 0.000 
Bayes-1 .14 0.311 0.071 0.041 0.579 0.214 0.168 0.967 0.984 0.994 0.077 0.412 0.650 0.019 0.002 0.001 
Bayes-1 .39 0.292 0.065 0.040 1.457 0.639 0.513 0.925 0.980 0.991 0.754 1.000 1.000 0.187 0.020 0.010 
Bayes-1 .59 0.321 0.069 0.041 2.579 1.126 0.904 0.899 0.971 0.989 0.957 1.000 1.000 0.602 0.068 0.030 

                 
Bayes-2 .00 0.000 0.000 0.000 0.375 0.079 0.049 0.998 1.000 1.000 0.002 0.000 0.000 0.002 0.000 0.000 
Bayes-2 .14 0.133 0.005 -0.005 0.579 0.214 0.168 0.966 0.983 0.994 0.076 0.414 0.649 0.016 0.002 0.001 
Bayes-2 .39 0.227 0.049 0.029 1.457 0.639 0.513 0.926 0.980 0.992 0.754 1.000 1.000 0.164 0.019 0.009 
Bayes-2 .59 0.255 0.057 0.033 2.578 1.126 0.904 0.899 0.972 0.990 0.955 1.000 1.000 0.597 0.064 0.029 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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conditions and methods. Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a moderated mediation model with categorical 

mediator variable and continuous endogenous variable are displayed in Table 4.7. From 

the table, we can see that in small samples at small effect sizes, the BB with median 

estimator is unbiased, whereas, for medium and large effect sizes, all methods are biased; 

at larger effect sizes all methods overestimate the true indirect effect. In larger sample 

sizes, the BB with median estimator underestimates the true indirect at small samples; in 

other conditions both BC bootstrap and delta methods tend to have lower biases compared 

to BB methods. In terms of confidence interval lengths, in small samples the BC bootstrap 

has the widest intervals and the delta methods have the narrowest intervals. On the 

contrary, in medium and large sample sizes the BB methods have slightly wider intervals 

than other methods.  

For coverage probabilities, only the second-order delta method and BB methods 

obtain approximately nominal coverage rates or higher in small samples across all effect 

sizes. For medium and large sample sizes, however, the bootstrap methods obtain 

approximately nominal coverage or higher, whereas the delta methods have slightly lower 

coverage rates for small effect sizes. All methods obtain lower than nominal Type I Error 

rates. With respect to power, the bootstrap methods have higher power for small samples 

than the delta methods, with the BC bootstrap demonstrating higher power. In medium and 

large size samples, except for small effect sizes where the BC bootstrap has higher power, 

all methods have similar power across conditions. Similar to previous simulations, the BB 

methods have lower power than other methods in large sample sizes with small effects. For 

MSEs, there are small differences across methods in small samples with large effect sizes, 
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Table 4.7 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Continuous 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 0.000 0.000 0.000 0.462 0.082 0.040 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.000 0.000 
Delta-1 .14 0.131 0.017 0.006 0.676 0.218 0.148 0.961 0.907 0.927 0.002 0.125 0.536 0.029 0.003 0.001 
Delta-1 .39 0.109 0.022 0.013 1.655 0.650 0.453 0.926 0.947 0.950 0.175 1.000 1.000 0.198 0.028 0.014 
Delta-1 .59 0.090 0.018 0.009 2.713 1.094 0.764 0.942 0.943 0.945 0.675 1.000 1.000 0.544 0.081 0.039 

                 
Delta-2 .00 0.000 0.000 0.000 0.605 0.108 0.053 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.000 0.000 
Delta-2 .14 0.131 0.017 0.006 0.791 0.229 0.152 1.000 0.930 0.936 0.001 0.104 0.497 0.029 0.003 0.001 
Delta-2 .39 0.109 0.022 0.013 1.726 0.656 0.455 0.940 0.949 0.951 0.145 1.000 1.000 0.198 0.028 0.014 
Delta-2 .59 0.090 0.018 0.009 2.777 1.099 0.766 0.947 0.943 0.945 0.634 1.000 1.000 0.544 0.081 0.039 

                 
BC-Boot .00 0.000 0.000 0.000 0.858 0.126 0.061 0.990 0.992 0.994 0.010 0.008 0.006 0.010 0.000 0.000 
BC-Boot .14 0.131 0.017 0.006 1.086 0.249 0.159 0.948 0.950 0.956 0.061 0.431 0.816 0.029 0.003 0.001 
BC-Boot .39 0.109 0.022 0.013 2.250 0.685 0.464 0.936 0.946 0.948 0.613 1.000 1.000 0.198 0.028 0.014 
BC-Boot .59 0.090 0.018 0.009 3.599 1.142 0.779 0.924 0.943 0.946 0.915 1.000 1.000 0.544 0.081 0.039 

                 
Bayes-1 .00 0.000 0.000 0.000 0.717 0.158 0.097 0.998 1.000 1.000 0.002 0.000 0.000 0.013 0.000 0.000 
Bayes-1 .14 0.240 0.049 0.027 0.915 0.294 0.222 0.990 0.979 0.992 0.022 0.136 0.324 0.036 0.003 0.002 
Bayes-1 .39 0.214 0.051 0.032 1.893 0.814 0.651 0.948 0.981 0.994 0.452 0.999 1.000 0.250 0.030 0.014 
Bayes-1 .59 0.193 0.045 0.027 3.025 1.362 1.095 0.943 0.980 0.993 0.862 1.000 1.000 0.712 0.088 0.042 

                 
Bayes-2 .00 0.000 0.000 0.000 0.717 0.158 0.097 0.998 1.000 1.000 0.002 0.000 0.000 0.008 0.000 0.000 
Bayes-2 .14 0.012 -0.081 -0.071 0.915 0.294 0.222 0.990 0.980 0.992 0.021 0.136 0.326 0.027 0.003 0.001 
Bayes-2 .39 0.107 0.019 0.010 1.892 0.814 0.652 0.948 0.982 0.993 0.455 0.999 1.000 0.216 0.029 0.014 
Bayes-2 .59 0.121 0.026 0.014 3.024 1.361 1.095 0.942 0.980 0.992 0.862 1.000 1.000 0.622 0.084 0.040 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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such that the BB with mean estimator has the highest variability, and the delta methods 

have the lowest variability; across other conditions all methods had similar MSEs. 

Supplemental figures for the results are presented in Appendix C. 

Results of the MC simulation for a moderated mediation model with categorical 

mediator variable and categorical endogenous variable are displayed in Table 4.8. For 

small samples, the frequentist methods (i.e., delta methods and BC bootstrap) and BB with 

median estimator provide the most unbiased estimates, with frequentist methods less 

biased. For medium and large sample sizes, at small effect sizes the BB with median 

estimator underestimates the true indirect effect; all other methods demonstrate slight 

bias, with less bias occurring in larger effect sizes. Bootstrap methods have wider 

confidence interval lengths than the delta methods for small sample sizes; in medium and 

large sample sizes, the BB methods have slightly wider intervals than other methods. For 

coverage probabilities, in small samples all methods have approximately nominal coverage 

rates, with slightly lower rates for the BC bootstrap and first-order delta method; in 

medium sample sizes, both the first-order delta method and BC bootstrap obtain lower 

than nominal coverage rates for small effects. Across other conditions, all methods obtain 

approximately nominal coverage rates or higher, with BB methods having the highest 

coverage rates.  

All methods have lower than nominal Type I Error rates. With respect to power, in 

small samples the bootstrap methods have higher power than the delta methods, with the 

BC bootstrap demonstrating the highest power. In medium and large samples, the BC 

bootstrap has the highest power, with more prominent differences among small effect 
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Table 4.8 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Categorical 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
Delta-1 .00 -0.003 0.001 0.000 0.990 0.163 0.081 1.000 1.000 1.000 0.000 0.000 0.000 0.049 0.001 0.000 
Delta-1 .14  0.155 0.052 0.027 1.296 0.361 0.240 0.986 0.930 0.936 0.000 0.025 0.133 0.103 0.009 0.004 
Delta-1 .39  0.174 0.043 0.013 2.853 1.038 0.712 0.939 0.945 0.947 0.022 0.742 0.971 0.631 0.072 0.034 
Delta-1 .59  0.218 0.038 0.016 4.736 1.739 1.200 0.948 0.952 0.950 0.126 0.967 1.000 1.845 0.203 0.095 

                 
Delta-2 .00 -0.003 0.001 0.000 1.289 0.216 0.106 1.000 1.000 1.000 0.000 0.000 0.000 0.049 0.001 0.000 
Delta-2 .14  0.155 0.052 0.027 1.561 0.390 0.250 1.000 0.978 0.950 0.000 0.020 0.114 0.103 0.009 0.004 
Delta-2 .39  0.174 0.043 0.013 3.050 1.054 0.718 0.969 0.949 0.949 0.015 0.727 0.969 0.631 0.072 0.034 
Delta-2 .59  0.218 0.038 0.016 4.934 1.754 1.206 0.960 0.954 0.951 0.095 0.966 1.000 1.845 0.203 0.095 

                 
BC-Boot .00 -0.003 0.001 0.000 1.789 0.260 0.124 0.991 0.994 0.994 0.011 0.006 0.006 0.049 0.001 0.000 
BC-Boot .14  0.155 0.052 0.027 2.210 0.441 0.267 0.969 0.919 0.943 0.036 0.177 0.376 0.103 0.009 0.004 
BC-Boot .39  0.174 0.043 0.013 3.958 1.136 0.744 0.940 0.942 0.947 0.268 0.839 0.980 0.631 0.072 0.034 
BC-Boot .59  0.218 0.038 0.016 5.982 1.880 1.246 0.937 0.941 0.945 0.523 0.978 1.000 1.845 0.203 0.095 

                 
Bayes-1 .00 -0.003 0.000 0.000 1.717 0.328 0.200 0.998 1.000 1.000 0.002 0.000 0.000 0.072 0.001 0.000 
Bayes-1 .14 0.378 0.112 0.066 2.043 0.532 0.387 0.993 0.993 0.995 0.010 0.030 0.054 0.152 0.010 0.004 
Bayes-1 .39 0.403 0.099 0.050 3.829 1.362 1.056 0.955 0.981 0.994 0.135 0.663 0.879 0.967 0.083 0.037 
Bayes-1 .59 0.473 0.093 0.052 6.222 2.256 1.768 0.938 0.982 0.994 0.364 0.935 0.996 3.638 0.240 0.107 

                 
Bayes-2 .00 -0.003 0.000 0.000 1.718 0.327 0.200 0.998 1.000 1.000 0.002 0.000 0.000 0.043 0.001 0.000 
Bayes-2 .14 0.087 -0.073 -0.084 2.044 0.533 0.387 0.993 0.993 0.995 0.009 0.030 0.052 0.102 0.008 0.004 
Bayes-2 .39 0.223 0.047 0.014 3.825 1.363 1.056 0.954 0.981 0.994 0.137 0.664 0.881 0.766 0.077 0.035 
Bayes-2 .59 0.323 0.058 0.029 6.218 2.256 1.768 0.939 0.983 0.995 0.363 0.935 0.996 2.444 0.221 0.101 

                 
Note. Delta-1 = first-order delta method; Delta-2 = second-order delta method; BC-Boot = bias-corrected nonparametric bootstrap; Bayes-1 = Bayesian bootstrap with mean 
estimator; Bayes-2 = Bayesian bootstrap with median estimator. 
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sizes; the delta methods and BB methods have approximately similar power in these 

conditions. In small sample sizes, MSEs are similar across methods except at large effect 

sizes, where the BB with mean estimator has the largest variability and the frequentist 

methods have the lowest variability. MSEs are similar across methods in medium and large 

sample sizes. Supplemental figures for the results are presented in Appendix C. 

4.2. Study 2 

4.2.1. Method. The purpose of the previous MC simulation study is to examine the 

performance of the BB for indirect effects analysis with complete data. As such, the purpose 

of Study 2 is to extend the scope of Study 1 by examining the performance of proposed FCS-

BB MI algorithm (Algorithm [3.3]) using gradient boosted models for missing data under 

the same substantive models considered in Study 1. A MC simulation study is conducted to 

examine the same metrics as in Study 1: (1) the biases, (2) mean squared errors (MSEs), 

(3) confidence interval coverage probabilities, (4) length of confidence intervals, (5) Type I 

Error/power of the FCS-BB MI algorithms using gradient boosted models for estimating 

and testing indirect effects in the presence of missing data. In addition, the fraction of 

missing information (FMI) is computed (Chapter 2, Equation [2.21]) as 

 

γ =

((
𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀
) + 2) /(𝑑𝑓 + 3)

1 + (
𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀
)

.  

In the FMI, 𝑑𝑓 are finite, sample-adjusted degrees of freedom given by 𝑑𝑓 =  
ϑφ

ϑ+φ
 , 

where  

ϑ = (𝑀 − 1) (1 + (
𝐁𝑀 + 𝐁𝑀/𝑀

𝐔̅𝑀

)
−2

) 
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and  

  
φ =

𝑛 − 𝑘 + 1

𝑛 − 𝑘 + 3
(𝑛 − 𝑘) (1 −

𝐁𝑀 + 𝐁𝑀/𝑀

𝐓𝑀
)  

and 𝑘 is the number of parameters fit to the data. For comparison, the relative performance 

of the imputation algorithms is compared to complete case (CC) analysis (i.e., listwise 

deletion), mean imputation (Algorithm [2.1]), model-based estimation (MBE) using 

bootstrap with BC CIs, JM MI (Algorithm [2.3]) or data augmentation (DA), and MICE using 

the Bayesian imputation algorithms (Algorithm [2.5] for continuous variables, Algorithm 

[2.6] for binary variables). For our FCS-BB and MICE implementations, we set maximum 

iterations to 5 due to computational complexity and 10, respectively. For our DA 

implementation, we used 10,000 iterations and took the values of the last I-step of the 

algorithm as the imputed values. For imputed values with categorical variables, we 

thresholded the value using the following rule: If the imputed value is greater than or equal 

to .5, its final value is 1, otherwise its final value is 0.  

For Bayesian (stage one and stage two sampling) and nonparametric bootstrapping, 

1,000 bootstrap samples are used. The number of multiply imputed data sets is set to 

match the percent of simulated missing data described below. The rationale for 𝑀 is based 

on Rubin’s derivation showing the relationship between asymptotic (ideal) variance of the 

multiply imputed estimates 𝐓∞ compared to the finite variance 𝐓∞ 

 𝐓𝑀 = (1 +
γ

𝑀
)𝐓∞. (4.4) 
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If a 𝑝% percent missing data mechanism is observed (e.g., 𝑝 = 20), a crude estimate of γ is 

𝑝/100 and we recommend that 𝑀 should set to the integer value of 𝑝 (e.g., 𝑀 = 20 for 20% 

missingness). Using this crude estimate for γ and value for 𝑀, when applied to (4.4), 

 
𝐓𝑀 = (1 +

𝑝/100

𝑝
)𝐓∞ 

= 1.01𝐓∞, 

 

(4.5) 

where this equation holds for all 𝑝. Equation (4.5) says that the finite 𝑀 variance 𝐓𝑀 is 1.01 

times larger than the ideal variance 𝐓∞.  

The simulation models and parameters are identical to those in Study 1. All 

parameters are estimated with ML and α will be set to .05 to generate 95% CIs. Based on 

the simulation results from Study 1, for Bayesian bootstrapping mean estimators are used 

to estimate indirect effects when both the mediator and endogenous variables are 

continuous and when the mediator and/or the endogenous variables are categorical and 

the effect size is small. On the contrary, the median estimator is used to estimate indirect 

effects when the mediator and/or the endogenous variables are categorical and the sample 

size is small and in larger samples with larger effect sizes.  

A MAR missing data mechanism is simulated for 𝑀 and 𝑌 that depends on 𝑋 similar 

to Enders et al. (2014). In particular, starting with the highest value of 𝑋, observed values 

of 𝑀 are deleted with probability .75 until the desired missingness rate is achieved. The 

same procedure is independently performed with 𝑌. To extend previous research (Enders 

et al., 2014), for mediation models a MCAR mechanism is simulated for 𝑋 such that the 

missingness probability is approximately the same across all variables. For moderated 

mediation models, however, MAR mechanisms are simulated for only 𝑀 and 𝑌 since by 
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creating missingness on 𝑀, the interaction effect 𝑀𝑊 will also contain missingness. Both 

the PI imputation and JAV method are used for imputing data under the moderated 

mediation model using the FCS-BB algorithm. 

Two missing data percentages are examined: 10% and 20%. The simulation consists 

of 2 (types of models) x 4 (mediator and endogenous variable type combinations) x 3 

(sample sizes) x 4 (regression coefficient effect sizes) x 2 (missing data conditions) = 192 

unique conditions. Due to computational complexity, 1,000 replications are simulated per 

condition. For gradient boosted learners, we use the following hyperparameter 

specifications given in Table 4.9.  

 

Table 4.9.  
Hyperparameters for Boosted Imputation Models 

Booster Iterations Tree Depth L2-norm Learning rate Subsampling 
Linear 10 - .01 .9 .75 
Tree 50 6 .01 .1 .50 

 

 

4.2.2. Results: Mediation models. Results of the MC simulation for a mediation model 

with continuous mediator and endogenous variables and missingness rates of 10% and 

20% (for each variable) are displayed in Table 4.10 and Table 4.11, respectively. As can be 

seen, except for mean imputation, all methods are relatively unbiased, with the smaller 

biases occurring with data augmentation (DA). Compared to other methods, mean 

imputation has slightly narrower intervals across all conditions and FCS-BB has slightly 

wider intervals at larger effect sizes. Aside from mean imputation, all methods have 

approximately nominal or higher than nominal coverage rates across conditions. Type I 
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Table 4.10 
Mediation Model Metrics – Mediator Continuous, Endogenous Continuous, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 0.000 0.000 0.000 0.065 0.012 0.006 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
CC .14 -0.013 0.035 0.015 0.106 0.041 0.029 0.922 0.931 0.953 0.011 0.415 0.903 0.001 0.000 0.000 
CC .39 0.017 0.012 0.003 0.260 0.111 0.078 0.935 0.960 0.948 0.693 1.000 1.000 0.005 0.001 0.000 
CC .59 -0.022 -0.003 -0.003 0.381 0.166 0.117 0.922 0.951 0.945 0.994 1.000 1.000 0.010 0.002 0.001 

                 
Mean .00 0.000 0.000 0.000 0.050 0.010 0.005 0.999 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 
Mean .14 -0.155 -0.108 -0.113 0.085 0.034 0.024 0.879 0.884 0.902 0.014 0.485 0.946 0.000 0.000 0.000 
Mean .39 -0.142 -0.121 -0.130 0.209 0.092 0.064 0.868 0.847 0.739 0.759 1.000 1.000 0.003 0.001 0.001 
Mean .59 -0.170 -0.142 -0.139 0.308 0.138 0.097 0.821 0.685 0.495 0.999 1.000 1.000 0.010 0.004 0.003 

                 
MBE .00 0.000 0.000 0.000 0.088 0.017 0.009 0.993 0.997 0.991 0.007 0.003 0.009 0.000 0.000 0.000 
MBE .14 -0.012 0.026 0.018 0.120 0.042 0.028 0.912 0.969 0.965 0.105 0.756 0.982 0.001 0.000 0.000 
MBE .39 0.018 0.015 0.003 0.241 0.103 0.072 0.954 0.955 0.950 0.919 1.000 1.000 0.004 0.001 0.000 
MBE .59 -0.016 -0.002 -0.004 0.333 0.147 0.104 0.943 0.948 0.951 0.999 1.000 1.000 0.007 0.001 0.001 

                 
DA .00 0.000 0.000 0.000 0.069 0.013 0.007 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
DA .14 -0.027 -0.010 0.000 0.107 0.039 0.027 0.959 0.933 0.929 0.009 0.420 0.903 0.001 0.000 0.000 
DA .39 -0.007 0.009 -0.001 0.250 0.107 0.075 0.936 0.947 0.937 0.720 1.000 1.000 0.004 0.001 0.000 
DA .59 -0.001 0.000 0.002 0.374 0.160 0.112 0.932 0.956 0.944 0.996 1.000 1.000 0.009 0.002 0.001 

                 
MICE .00 0.000 0.000 0.000 0.069 0.013 0.007 1.000 1.000 0.999 0.000 0.000 0.001 0.000 0.000 0.000 
MICE .14 -0.018 0.023 0.018 0.108 0.040 0.028 0.941 0.931 0.949 0.011 0.449 0.925 0.001 0.000 0.000 
MICE .39 0.011 0.012 0.002 0.255 0.107 0.075 0.935 0.958 0.954 0.710 1.000 1.000 0.004 0.001 0.000 
MICE .59 -0.025 -0.005 -0.004 0.371 0.160 0.112 0.924 0.951 0.946 0.997 1.000 1.000 0.009 0.002 0.001 

                 
FCS-BB .00 0.000 0.000 0.000 0.087 0.022 0.014 0.999 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 
FCS-BB .14 -0.013 -0.019 -0.016 0.121 0.050 0.040 0.971 0.984 0.994 0.052 0.447 0.789 0.001 0.000 0.000 
FCS-BB .39 0.011 0.021 0.012 0.263 0.134 0.109 0.944 0.988 0.995 0.849 1.000 1.000 0.005 0.001 0.000 
FCS-BB .59 -0.002 0.020 0.020 0.388 0.202 0.165 0.933 0.981 0.994 0.999 1.000 1.000 0.010 0.002 0.001 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap. 
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Table 4.11 
Mediation Model Metrics – Mediator Continuous, Endogenous Continuous, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 0.000 0.000 0.000 0.088 0.017 0.009 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
CC .14 -0.042 -0.051 -0.001 0.130 0.047 0.032 0.950 0.910 0.908 0.002 0.199 0.717 0.001 0.000 0.000 
CC .39 -0.021 -0.009 0.000 0.298 0.127 0.089 0.913 0.944 0.946 0.444 1.000 1.000 0.006 0.001 0.001 
CC .59 0.001 -0.002 0.002 0.449 0.191 0.134 0.945 0.946 0.937 0.942 1.000 1.000 0.012 0.002 0.001 

                 
Mean .00 0.000 0.000 0.000 0.052 0.011 0.005 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mean .14 -0.280 -0.285 -0.262 0.082 0.031 0.022 0.841 0.779 0.742 0.005 0.336 0.822 0.000 0.000 0.000 
Mean .39 -0.291 -0.270 -0.260 0.193 0.085 0.060 0.740 0.501 0.282 0.594 1.000 1.000 0.005 0.002 0.002 
Mean .59 -0.290 -0.269 -0.264 0.290 0.129 0.091 0.647 0.225 0.053 0.981 1.000 1.000 0.016 0.010 0.009 

                 
MBE .00 0.000 0.000 0.000 0.110 0.022 0.011 0.993 0.997 0.997 0.007 0.003 0.003 0.000 0.000 0.000 
MBE .14 -0.007 -0.034 -0.006 0.141 0.046 0.031 0.928 0.951 0.940 0.069 0.597 0.920 0.001 0.000 0.000 
MBE .39 -0.003 -0.005 0.000 0.266 0.112 0.079 0.944 0.956 0.947 0.828 1.000 1.000 0.004 0.001 0.000 
MBE .59 0.010 -0.001 0.001 0.367 0.160 0.113 0.939 0.947 0.950 0.997 1.000 1.000 0.009 0.002 0.001 

                 
DA .00 0.001 0.000 0.000 0.093 0.017 0.008 1.000 0.999 1.000 0.000 0.001 0.000 0.000 0.000 0.000 
DA .14 0.010 0.012 0.016 0.130 0.045 0.031 0.992 0.922 0.924 0.007 0.307 0.807 0.001 0.000 0.000 
DA .39 0.009 -0.008 -0.003 0.282 0.117 0.082 0.937 0.942 0.948 0.574 1.000 1.000 0.005 0.001 0.000 
DA .59 -0.015 -0.004 -0.007 0.416 0.175 0.123 0.926 0.939 0.944 0.978 1.000 1.000 0.011 0.002 0.001 

                 
MICE .00 0.000 0.000 0.000 0.091 0.017 0.009 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
MICE .14 -0.039 -0.042 -0.008 0.129 0.044 0.030 0.991 0.913 0.906 0.004 0.264 0.787 0.001 0.000 0.000 
MICE .39 -0.032 -0.011 -0.002 0.282 0.117 0.082 0.931 0.945 0.949 0.521 1.000 1.000 0.005 0.001 0.000 
MICE .59 -0.010 -0.002 0.001 0.418 0.176 0.123 0.940 0.934 0.947 0.978 1.000 1.000 0.011 0.002 0.001 

                 
FCS-BB .00 0.000 0.000 0.000 0.113 0.028 0.017 0.997 1.000 1.000 0.003 0.000 0.000 0.000 0.000 0.000 
FCS-BB .14 -0.037 -0.041 -0.007 0.149 0.056 0.044 0.983 0.981 0.990 0.026 0.278 0.603 0.001 0.000 0.000 
FCS-BB .39 0.023 0.008 0.005 0.309 0.153 0.125 0.942 0.976 0.994 0.710 1.000 1.000 0.006 0.001 0.001 
FCS-BB .59 0.010 0.004 0.001 0.465 0.237 0.193 0.940 0.964 0.986 0.985 1.000 1.000 0.015 0.003 0.002 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap. 
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Error levels are below nominal levels for all methods across all conditions. With 

regards to power in small samples, MBE and FCS-BB tend to have higher power than other 

methods, with MBE having the highest power. In medium sample sizes, MBE has the 

highest power across missingness; other methods have similar power with 10% 

missingness, but with 20% missingness CC has lower power than other methods. In large 

samples, MBE has the highest power, whereas, FCS-BB has the lowest power; other 

methods have similar rejection rates with 10% missingness, but at 20% missingness CC has 

lower power than other methods.  Across most conditions, MSEs are comparable across 

methods. At larger effect sizes, however, MSEs are larger for mean imputation, especially 

with higher rates of missingness. For MI methods (i.e., DA, MICE, FCS-BB), the fraction of 

missing information (FMI) is more consistently estimated by the FCS-BB method; DA and 

MICE overestimate the FMI (see Table 4.12). Supplemental figures for the results are 

presented in Appendix D. 

Initial results of the MC simulation for a mediation model with continuous mediator 

variable and categorical endogenous variable for the FCS-BB method demonstrated high 

bias, wide confidence intervals, poor coverage, and low power. As van Buuren (2012)

notes, to obtain more accurate imputations, an imputation model should incorporate 

prediction error and parameter uncertainty (if possible). In the case of linear boosters for 

categorical variables, asymptotically the models converge to estimates from linear logistic 

regression models (Bühlmann & Hothorn, 2007). As such, using ideas from Bayesian 

logistic regression (Gelman et al., 2013), we incorporated parameter uncertainty into the 

linear gradient boosted imputers (for categorical variables) by following the steps 

presented in Lines 9 to 13 of Algorithm 2.6. For the remainder of this section, we present  



www.manaraa.com

164 

 

 

Table 4.12 
Mediation Model FMI Metric – Mediator Continuous, Endogenous Continuous 
  FMI – 10% Missingness  FMI – 20% Missingness  
Method Effect 100  500 1000 100  500 1000 

        
DA .00 0.149 0.138 0.136 0.278 0.255 0.259 
DA .14 0.163 0.160 0.157 0.295 0.307 0.302 
DA .39 0.167 0.156 0.155 0.310 0.300 0.298 
DA .59 0.164 0.147 0.145 0.311 0.294 0.293 

        
MICE .00 0.149 0.138 0.137 0.270 0.259 0.263 
MICE .14 0.168 0.162 0.154 0.299 0.308 0.308 
MICE .39 0.177 0.153 0.152 0.322 0.302 0.299 
MICE .59 0.171 0.153 0.147 0.315 0.293 0.291 

        
FCS-BB .00 0.148 0.143 0.136 0.276 0.266 0.256 
FCS-BB .14 0.148 0.143 0.147 0.278 0.270 0.277 
FCS-BB .39 0.134 0.128 0.129 0.265 0.249 0.250 
FCS-BB .59 0.114 0.113 0.111 0.232 0.226 0.222 

        
Note. DA = data augmentation; MICE = multiple imputation by chained 
equations; FCS-BB = fully conditional specification using Bayesian bootstrap. 

 

results of both original and modified versions of the FCS-BB for comparison purposes. The 

results of the MC simulation for a mediation model with continuous mediator variable and 

categorical and missingness rates of 10% and 20% (for each variable) are displayed in 

Table 4.13 and Table 4.14, respectively.  

For non-null effects, mean imputation, MBE, and FCS-BB are biased in all conditions, 

with FCS-BB the most biased and mean imputation the least biased. For DA, MICE, CC, and  

the modified FCS-BB (i.e., FCS-BB*), however, these methods have relatively lower biases 

than other methods; MICE and FCS-BB have comparable performance. MBE and mean 

imputation have the narrowest confidence interval lengths across all conditions, whereas, 

the FCS methods have the widest; other methods have similar lengths across conditions. In 

terms of coverage probabilities, across all conditions FCS-BB* is the only method that has 

approximately nominal or above nominal coverage rates. At larger effect sizes mean
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Table 4.13 
Mediation Model Metrics – Mediator Continuous, Endogenous Categorical, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 0.001 0.000 0.000 0.139 0.026 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
CC .14 0.131 0.043 0.003 0.199 0.068 0.045 0.977 0.934 0.926 0.000 0.092 0.344 0.002 0.000 0.000 
CC .39 0.078 0.021 0.007 0.452 0.184 0.129 0.941 0.947 0.950 0.169 0.959 1.000 0.015 0.002 0.001 
CC .59 0.066 0.003 0.005 0.703 0.292 0.206 0.943 0.947 0.952 0.549 1.000 1.000 0.036 0.006 0.003 

                 
Mean .00 0.001 0.000 0.000 0.114 0.022 0.011 1.000 0.999 1.000 0.000 0.001 0.000 0.001 0.000 0.000 
Mean .14 -0.039 -0.068 -0.117 0.163 0.057 0.038 0.964 0.916 0.909 0.002 0.099 0.392 0.002 0.000 0.000 
Mean .39 -0.070 -0.108 -0.115 0.372 0.154 0.108 0.906 0.893 0.877 0.188 0.975 1.000 0.010 0.002 0.001 
Mean .59 -0.099 -0.127 -0.127 0.566 0.242 0.170 0.909 0.837 0.805 0.636 1.000 1.000 0.023 0.006 0.004 

                 
MBE .00 0.001 0.000 0.000 0.129 0.024 0.012 0.996 0.994 0.995 0.004 0.006 0.005 0.000 0.000 0.000 
MBE .14 -0.312 -0.353 -0.378 0.156 0.045 0.029 0.942 0.909 0.852 0.033 0.303 0.549 0.001 0.000 0.000 
MBE .39 -0.366 -0.388 -0.393 0.260 0.100 0.070 0.879 0.420 0.112 0.409 0.986 1.000 0.007 0.004 0.004 
MBE .59 -0.408 -0.423 -0.420 0.336 0.136 0.095 0.638 0.018 0.001 0.787 1.000 1.000 0.027 0.023 0.022 

                 
DA .00 0.001 0.000 0.000 0.142 0.026 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
DA .14 0.152 -0.036 -0.020 0.196 0.064 0.044 0.997 0.938 0.948 0.003 0.096 0.350 0.002 0.000 0.000 
DA .39 0.027 -0.008 -0.018 0.434 0.176 0.123 0.946 0.949 0.941 0.151 0.964 1.000 0.012 0.002 0.001 
DA .59 0.028 -0.015 -0.023 0.684 0.281 0.196 0.946 0.947 0.952 0.578 1.000 1.000 0.031 0.005 0.002 

                 
MICE .00 0.001 0.000 0.000 0.145 0.027 0.013 1.000 0.999 1.000 0.000 0.001 0.000 0.001 0.000 0.000 
MICE .14 0.125 0.049 0.002 0.198 0.066 0.044 0.998 0.937 0.928 0.002 0.094 0.388 0.002 0.000 0.000 
MICE .39 0.065 0.017 0.003 0.440 0.177 0.124 0.952 0.946 0.947 0.164 0.975 1.000 0.013 0.002 0.001 
MICE .59 0.049 0.002 0.001 0.684 0.282 0.198 0.947 0.940 0.951 0.570 1.000 1.000 0.031 0.005 0.002 

                 
FCS-BB .00 0.001 0.000 0.000 0.252 0.070 0.047 0.998 0.999 1.000 0.002 0.001 0.000 0.001 0.000 0.000 
FCS-BB .14 0.242 0.430 0.498 0.311 0.124 0.097 0.991 0.985 0.990 0.021 0.100 0.182 0.003 0.001 0.000 
FCS-BB .39 0.327 0.337 0.337 0.597 0.265 0.210 0.939 0.919 0.905 0.353 0.946 0.996 0.023 0.006 0.004 
FCS-BB .59 0.311 0.242 0.239 0.896 0.404 0.325 0.934 0.921 0.907 0.695 1.000 1.000 0.058 0.014 0.010 

                 
FCS-BB* .00 0.001 0.000 0.000 0.195 0.045 0.028 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
FCS-BB* .14 -0.038 -0.017 -0.005 0.248 0.085 0.065 0.987 0.984 0.990 0.017 0.085 0.183 0.002 0.000 0.000 
FCS-BB* .39 0.051 0.013 0.000 0.490 0.225 0.180 0.953 0.976 0.994 0.341 0.925 0.998 0.013 0.002 0.001 
FCS-BB* .59 0.042 0.004 0.019 0.778 0.366 0.292 0.957 0.981 0.993 0.689 0.999 1.000 0.037 0.006 0.003 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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Table 4.14 
Mediation Model Metrics – Mediator Continuous, Endogenous Categorical, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 -0.001 0.000 0.000 0.187 0.034 0.017 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
CC .14 -0.040 0.016 0.015 0.242 0.078 0.053 0.985 0.936 0.946 0.002 0.039 0.208 0.004 0.000 0.000 
CC .39 0.064 -0.001 0.002 0.529 0.211 0.148 0.925 0.941 0.947 0.069 0.873 0.995 0.019 0.003 0.001 
CC .59 0.090 0.023 0.015 0.841 0.339 0.237 0.940 0.951 0.947 0.352 0.998 1.000 0.055 0.008 0.004 

                 
Mean .00 -0.001 0.000 0.000 0.125 0.023 0.011 0.999 1.000 1.000 0.001 0.000 0.000 0.001 0.000 0.000 
Mean .14 -0.241 -0.211 -0.218 0.163 0.055 0.037 0.957 0.881 0.873 0.002 0.062 0.264 0.002 0.000 0.000 
Mean .39 -0.206 -0.238 -0.226 0.358 0.147 0.103 0.861 0.769 0.715 0.109 0.935 1.000 0.010 0.003 0.002 
Mean .59 -0.207 -0.223 -0.228 0.543 0.231 0.162 0.837 0.682 0.498 0.496 1.000 1.000 0.026 0.009 0.008 

                 
MBE .00 0.000 0.000 0.000 0.171 0.031 0.015 0.997 0.994 0.996 0.003 0.006 0.004 0.001 0.000 0.000 
MBE .14 -0.405 -0.375 -0.372 0.195 0.053 0.034 0.967 0.907 0.886 0.015 0.218 0.455 0.001 0.000 0.000 
MBE .39 -0.375 -0.402 -0.395 0.309 0.115 0.080 0.904 0.502 0.212 0.286 0.936 1.000 0.008 0.005 0.004 
MBE .59 -0.401 -0.411 -0.417 0.403 0.156 0.109 0.736 0.077 0.001 0.640 1.000 1.000 0.029 0.022 0.022 

                 
DA .00 0.001 0.000 0.000 0.186 0.033 0.016 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
DA .14 -0.007 0.040 -0.036 0.244 0.073 0.048 1.000 0.942 0.934 0.000 0.065 0.261 0.003 0.000 0.000 
DA .39 0.021 -0.037 -0.041 0.494 0.190 0.133 0.943 0.945 0.951 0.067 0.927 0.998 0.014 0.002 0.001 
DA .59 0.017 -0.046 -0.050 0.766 0.305 0.212 0.950 0.937 0.930 0.388 0.999 1.000 0.037 0.006 0.003 

                 
MICE .00 -0.001 0.000 0.000 0.191 0.034 0.017 0.999 1.000 0.999 0.001 0.000 0.001 0.001 0.000 0.000 
MICE .14 -0.066 0.012 0.002 0.240 0.073 0.048 0.999 0.939 0.950 0.001 0.052 0.259 0.003 0.000 0.000 
MICE .39 0.033 -0.009 -0.004 0.496 0.194 0.136 0.935 0.944 0.954 0.071 0.926 1.000 0.015 0.003 0.001 
MICE .59 0.060 0.014 0.008 0.781 0.312 0.218 0.955 0.955 0.948 0.417 1.000 1.000 0.041 0.006 0.003 

                 
FCS-BB .00 -0.001 0.000 0.000 0.391 0.112 0.078 0.998 1.000 1.000 0.002 0.000 0.000 0.002 0.000 0.000 
FCS-BB .14 0.284 0.795 0.998 0.461 0.183 0.147 0.992 0.988 0.986 0.014 0.062 0.110 0.006 0.001 0.001 
FCS-BB .39 0.570 0.664 0.708 0.855 0.371 0.289 0.956 0.836 0.696 0.265 0.843 0.984 0.043 0.016 0.014 
FCS-BB .59 0.602 0.540 0.536 1.304 0.551 0.437 0.899 0.738 0.584 0.523 0.993 1.000 0.137 0.047 0.041 

                 
FCS-BB* .00 0.000 0.000 0.000 0.256 0.056 0.035 0.997 0.999 1.000 0.003 0.001 0.000 0.001 0.000 0.000 
FCS-BB* .14 -0.060 -0.015 -0.005 0.313 0.097 0.074 0.996 0.988 0.993 0.015 0.064 0.139 0.002 0.000 0.000 
FCS-BB* .39 0.035 0.009 0.004 0.616 0.258 0.205 0.944 0.973 0.990 0.293 0.887 0.987 0.026 0.003 0.001 
FCS-BB* .59 0.051 0.021 0.016 0.973 0.424 0.339 0.946 0.975 0.989 0.610 0.995 1.000 0.065 0.009 0.004 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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imputation, FCS-BB, and MBE have poor coverage performance, with the lowest coverages 

for MBE and the highest coverages for mean imputation; DA, MICE, and CC have similar 

coverage rates across conditions.  

All methods have lower than nominal Type I Error rates. Power is highest among 

MBE across all conditions; generally, all other methods have comparable power except in 

small samples with medium effect sizes and in large samples with small effect sizes. For the 

former, FCS-BB and FCS-BB* have higher power compared to other methods, whereas for 

the latter, these two methods have lower power. At larger effect sizes, MSEs are highest 

among the FCS-BB method; other methods have comparable mean squared errors. With 

regards to MI methods, the FMI estimates (see Table 4.15) are comparable across all  

 
Table 4.15 
Mediation Model FMI Metric – Mediator Continuous, Endogenous Categorical 
  FMI – 10% Missingness  FMI – 20% Missingness  
Method Effect 100  500 1000 100  500 1000 

        
DA .00 0.140 0.135 0.138 0.266 0.248 0.244 
DA .14 0.150 0.139 0.143 0.275 0.270 0.269 
DA .39 0.156 0.145 0.147 0.297 0.279 0.278 
DA .59 0.167 0.154 0.149 0.307 0.292 0.286 

        
MICE .00 0.146 0.141 0.137 0.272 0.257 0.257 
MICE .14 0.154 0.146 0.144 0.283 0.285 0.282 
MICE .39 0.162 0.146 0.146 0.305 0.292 0.292 
MICE .59 0.168 0.154 0.148 0.315 0.295 0.298 

        
FCS-BB .00 0.167 0.198 0.215 0.304 0.366 0.381 
FCS-BB .14 0.168 0.192 0.219 0.321 0.384 0.409 
FCS-BB .39 0.133 0.117 0.105 0.285 0.270 0.260 
FCS-BB .59 0.118 0.088 0.085 0.236 0.204 0.197 

        
FCS-BB* .00 0.148 0.149 0.141 0.281 0.272 0.258 
FCS-BB* .14 0.151 0.141 0.139 0.285 0.278 0.271 
FCS-BB* .39 0.151 0.137 0.136 0.283 0.265 0.266 
FCS-BB* .59 0.149 0.136 0.136 0.278 0.264 0.264 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; 
FCS-BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = 
modified fully conditional specification using Bayesian bootstrap. 
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methods except FCS-BB, which overestimates the amount of missing information at smaller 

effect sizes. Supplemental figures for the results are presented in Appendix D. 

 Results of the MC simulation for a mediation model with categorical mediator 

variable and continuous endogenous variable and missingness rates of 10% and 20% (for 

each variable) are displayed in Table 4.16 and Table 4.17, respectively. Similar to the 

previous simulation, for non-null effects, FCS-BB, mean imputation, and MBE methods 

are biased, with FCS-BB exhibiting the most bias and mean imputation the least bias; other 

methods demonstrate slight bias, with higher bias occurring with small effect sizes. In 

particular, MICE and FCS-BB* have comparable levels of bias. Confidence interval lengths 

are widest for the FCS-BB method and narrowest for the MBE method; other methods 

demonstrate similar trends in lengths with FCS-BB* demonstrating slightly wider intervals 

than other methods. With regards to coverage probabilities, FCS-BB* is the only method 

that has nominal or above nominal coverage rates across all conditions. At larger effect 

sizes, mean imputation, FCS-BB, and MBE tend to have poor coverage performance, with 

the lowest coverages for MBE and the highest coverages for FCS-BB; all other methods have 

similar nominal coverage rates across conditions. All methods have lower than nominal 

Type I Error rates. Power is highest among MBE and in general, comparable across other 

methods and conditions, except with small samples. In small samples with larger effects, 

FCS-BB and FCS-BB* have higher power. For MSEs, in smaller samples with larger effect 

sizes, both FCS-BB and MBE have larger MSEs compared to other methods; across 

conditions other methods have comparable MSEs. With regards to FMI, estimates are 

comparable across all methods except FCS-BB, which overestimates the amount of missing 
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Table 4.16 
Mediation Model Metrics – Mediator Categorical, Endogenous Continuous, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 -0.001 0.000 0.000 0.277 0.050 0.025 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
CC .14 0.002 0.005 -0.020 0.327 0.091 0.060 0.984 0.900 0.895 0.002 0.014 0.081 0.006 0.001 0.000 
CC .39 0.002 0.004 0.013 0.582 0.233 0.163 0.912 0.932 0.949 0.028 0.847 1.000 0.023 0.003 0.002 
CC .59 0.045 -0.006 -0.005 0.875 0.361 0.254 0.915 0.946 0.958 0.182 0.999 1.000 0.057 0.009 0.004 

                 
Mean .00 -0.001 0.000 0.000 0.216 0.039 0.020 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
Mean .14 -0.146 -0.196 -0.213 0.254 0.072 0.048 0.984 0.850 0.843 0.000 0.014 0.074 0.004 0.000 0.000 
Mean .39 -0.226 -0.207 -0.196 0.447 0.184 0.129 0.848 0.834 0.801 0.020 0.861 1.000 0.014 0.003 0.002 
Mean .59 -0.199 -0.221 -0.218 0.670 0.282 0.199 0.823 0.740 0.638 0.197 0.999 1.000 0.038 0.011 0.008 

                 
MBE .00 0.000 0.000 0.000 0.156 0.029 0.014 0.994 0.989 0.992 0.006 0.011 0.008 0.000 0.000 0.000 
MBE .14 -0.618 -0.621 -0.630 0.169 0.041 0.025 0.948 0.778 0.638 0.012 0.112 0.309 0.001 0.000 0.000 
MBE .39 -0.653 -0.641 -0.637 0.228 0.082 0.056 0.683 0.040 0.000 0.177 0.952 1.000 0.012 0.010 0.010 
MBE .59 -0.664 -0.666 -0.663 0.282 0.110 0.077 0.229 0.000 0.000 0.535 0.999 1.000 0.058 0.055 0.054 

                 
DA .00 -0.001 0.000 0.000 0.281 0.051 0.025 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
DA .14 0.024 -0.034 -0.069 0.327 0.088 0.057 0.999 0.912 0.898 0.001 0.012 0.081 0.005 0.000 0.000 
DA .39 -0.056 -0.045 -0.033 0.561 0.221 0.154 0.911 0.933 0.934 0.020 0.853 1.000 0.019 0.003 0.001 
DA .59 -0.012 -0.052 -0.054 0.842 0.342 0.239 0.915 0.938 0.940 0.167 0.999 1.000 0.048 0.008 0.003 

                 
MICE .00 -0.001 0.000 0.000 0.288 0.052 0.026 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
MICE .14 0.055 0.005 -0.031 0.337 0.090 0.058 0.999 0.918 0.908 0.002 0.015 0.086 0.006 0.001 0.000 
MICE .39 -0.009 -0.002 0.010 0.576 0.226 0.158 0.915 0.938 0.952 0.027 0.875 1.000 0.021 0.003 0.002 
MICE .59 0.035 -0.006 -0.006 0.866 0.351 0.246 0.908 0.946 0.955 0.192 0.999 1.000 0.055 0.008 0.004 

                 
FCS-BB .00 -0.001 0.000 0.000 0.509 0.145 0.101 0.999 1.000 1.000 0.001 0.000 0.000 0.004 0.000 0.000 
FCS-BB .14 0.155 0.333 0.434 0.556 0.188 0.143 0.996 0.996 0.998 0.005 0.015 0.032 0.008 0.001 0.001 
FCS-BB .39 0.150 0.268 0.301 0.804 0.341 0.269 0.973 0.971 0.969 0.105 0.842 0.996 0.030 0.006 0.004 
FCS-BB .59 0.209 0.185 0.189 1.099 0.491 0.392 0.948 0.958 0.971 0.452 0.998 1.000 0.077 0.014 0.009 

                 
FCS-BB* .00 0.000 0.000 0.000 0.380 0.090 0.056 0.997 1.000 1.000 0.003 0.000 0.000 0.002 0.000 0.000 
FCS-BB* .14 -0.051 -0.007 -0.032 0.428 0.129 0.094 0.995 0.996 0.996 0.006 0.018 0.033 0.004 0.000 0.000 
FCS-BB* .39 -0.005 -0.002 -0.018 0.679 0.281 0.226 0.962 0.978 0.996 0.150 0.850 0.993 0.024 0.004 0.002 
FCS-BB* .59 -0.008 -0.007 -0.010 0.952 0.440 0.355 0.947 0.983 0.990 0.452 0.999 1.000 0.052 0.008 0.004 

 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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Table 4.17 
Mediation Model Metrics – Mediator Categorical, Endogenous Continuous, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 0.002 0.000 0.000 0.383 0.068 0.033 1.000 1.000 1.000 0.000 0.000 0.000 0.006 0.000 0.000 
CC .14 0.114 -0.057 0.022 0.419 0.106 0.071 0.996 0.917 0.914 0.000 0.004 0.043 0.009 0.001 0.000 
CC .39 -0.016 0.020 0.013 0.703 0.270 0.188 0.901 0.924 0.936 0.007 0.655 0.987 0.033 0.005 0.002 
CC .59 0.055 0.014 0.005 1.046 0.421 0.293 0.926 0.949 0.945 0.072 0.994 1.000 0.070 0.011 0.006 

                 
Mean .00 -0.002 0.000 0.000 0.235 0.042 0.021 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
Mean .14 -0.302 -0.383 -0.328 0.261 0.068 0.045 0.982 0.784 0.791 0.000 0.005 0.057 0.004 0.000 0.000 
Mean .39 -0.406 -0.353 -0.349 0.423 0.170 0.119 0.775 0.676 0.534 0.011 0.655 0.986 0.015 0.005 0.004 
Mean .59 -0.344 -0.361 -0.370 0.632 0.260 0.181 0.755 0.483 0.234 0.107 0.992 1.000 0.041 0.020 0.019 

                 
MBE .00 0.001 0.000 0.000 0.203 0.037 0.018 0.996 0.997 0.992 0.004 0.003 0.008 0.001 0.000 0.000 
MBE .14 -0.619 -0.664 -0.631 0.211 0.048 0.029 0.972 0.761 0.712 0.009 0.064 0.211 0.001 0.000 0.000 
MBE .39 -0.658 -0.649 -0.648 0.275 0.092 0.063 0.727 0.074 0.000 0.122 0.862 0.994 0.013 0.010 0.010 
MBE .59 -0.671 -0.674 -0.672 0.332 0.123 0.086 0.353 0.000 0.000 0.383 0.999 1.000 0.060 0.056 0.055 

                 
DA .00 0.000 0.000 0.000 0.371 0.065 0.032 1.000 1.000 1.000 0.000 0.000 0.000 0.004 0.000 0.000 
DA .14 -0.057 -0.124 -0.059 0.408 0.098 0.064 1.000 0.953 0.916 0.000 0.004 0.052 0.006 0.000 0.000 
DA .39 -0.136 -0.078 -0.071 0.639 0.239 0.166 0.921 0.926 0.924 0.004 0.687 0.991 0.022 0.004 0.002 
DA .59 -0.048 -0.077 -0.089 0.947 0.373 0.257 0.918 0.921 0.884 0.075 0.998 1.000 0.048 0.009 0.005 

                 
MICE .00 0.000 0.000 0.000 0.390 0.069 0.034 1.000 1.000 1.000 0.000 0.000 0.000 0.004 0.000 0.000 
MICE .14 0.032 -0.045 0.027 0.424 0.104 0.067 1.000 0.964 0.928 0.000 0.006 0.062 0.007 0.001 0.000 
MICE .39 -0.058 0.006 0.013 0.677 0.253 0.177 0.932 0.934 0.945 0.007 0.719 0.990 0.025 0.004 0.002 
MICE .59 0.038 0.017 0.004 1.004 0.397 0.274 0.937 0.944 0.929 0.091 0.997 1.000 0.058 0.010 0.005 

                 
FCS-BB .00 0.000 0.001 0.000 0.830 0.268 0.197 0.999 1.000 1.000 0.001 0.000 0.000 0.010 0.001 0.000 
FCS-BB .14 0.511 0.946 1.460 0.869 0.313 0.250 0.999 0.996 0.992 0.002 0.009 0.023 0.016 0.003 0.002 
FCS-BB .39 0.372 0.693 0.747 1.167 0.478 0.371 0.986 0.916 0.835 0.064 0.726 0.963 0.058 0.020 0.017 
FCS-BB .59 0.468 0.492 0.485 1.521 0.645 0.507 0.966 0.850 0.777 0.307 0.996 1.000 0.134 0.045 0.037 

                 
FCS-BB* .00 -0.003 0.000 0.000 0.488 0.111 0.069 0.998 1.000 1.000 0.002 0.000 0.000 0.003 0.000 0.000 
FCS-BB* .14 -0.032 -0.046 -0.031 0.525 0.150 0.106 0.999 0.995 0.995 0.001 0.015 0.019 0.005 0.001 0.000 
FCS-BB* .39 -0.055 -0.035 -0.033 0.809 0.319 0.253 0.971 0.984 0.995 0.080 0.730 0.971 0.027 0.004 0.002 
FCS-BB* .59 0.013 -0.013 0.000 1.148 0.497 0.402 0.953 0.979 0.993 0.323 0.996 1.000 0.073 0.010 0.005 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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information at smaller effect sizes (see Table 4.18). Supplemental figures for the results are 

presented in Appendix D. 

 

Table 4.18 
Mediation Model FMI Metric – Mediator Categorical, Endogenous Continuous 
  FMI – 10% Missingness  FMI – 20% Missingness  
Method Effect 100  500 1000 100  500 1000 

        
DA .00 0.141 0.132 0.128 0.254 0.242 0.240 
DA .14 0.145 0.150 0.150 0.267 0.273 0.285 
DA .39 0.163 0.161 0.159 0.289 0.299 0.296 
DA .59 0.167 0.165 0.165 0.303 0.306 0.303 

        
MICE .00 0.143 0.135 0.135 0.269 0.258 0.257 
MICE .14 0.151 0.151 0.154 0.277 0.285 0.294 
MICE .39 0.166 0.161 0.159 0.301 0.313 0.317 
MICE .59 0.171 0.164 0.163 0.317 0.318 0.314 

        
FCS-BB .00 0.166 0.193 0.207 0.287 0.352 0.367 
FCS-BB .14 0.155 0.177 0.183 0.293 0.329 0.335 
FCS-BB .39 0.141 0.120 0.116 0.271 0.245 0.226 
FCS-BB .59 0.128 0.107 0.099 0.244 0.212 0.206 

        
FCS-BB* .00 0.158 0.147 0.140 0.298 0.271 0.266 
FCS-BB* .14 0.161 0.148 0.148 0.296 0.280 0.276 
FCS-BB* .39 0.160 0.153 0.158 0.304 0.293 0.292 
FCS-BB* .59 0.169 0.156 0.157 0.300 0.294 0.288 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; 
FCS-BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = 
modified fully conditional specification using Bayesian bootstrap. 

 

Results of the MC simulation for a mediation model with categorical mediator 

variable and categorical endogenous variable and missingness rates of 10% and 20% (for 

each variable) are displayed in Table 4.19 and Table 4.20, respectively. As can be seen in 

the tables, FCS-BB and MBE have the largest biases, whereas other methods are slightly 

biased in small samples and approximately unbiased in other conditions. Confidence 

interval lengths are widest for FCS-BB and lowest for MBE; in small samples the FCS-BB* 

has slightly wider intervals than other methods, whereas mean imputation has slightly 
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narrowest intervals. In other conditions, confidence intervals are relatively similar across 

methods. Similar to previous results, FCS-BB* is the only method that has nominal or above 

nominal coverage rates across all conditions. Coverage probabilities are poor for both 

mean imputation and MBE, with lower probabilities for MBE; FCS-BB also has poor  

coverage in medium and large samples with larger effect sizes and more missingness. 

Across other conditions, DA, MICE, and CC have approximately nominal or higher coverage 

probabilities.  

Echoing previous results, all methods have lower than nominal Type I Error rates. 

For power, in small samples relative to other methods, MBE and FCS methods have slightly 

more power at medium and large effect sizes. In medium sample sizes MBE has higher 

power, but with 20% missingness mean imputation has comparable power at medium 

effect sizes and FCS-BB* has comparable power at large effect sizes. In large samples with 

10% missingness, relative to other methods MBE has higher power across all conditions. 

Mean imputation, however, performs comparable to MBE at small effect sizes, but has 

lower power as effect size increases compared to other methods. At medium effect sizes, 

Mice, DA, and CC have higher power than FCS-BB and FCS-BB*. In large samples with 20% 

missingness, mean imputation outperforms all methods at small effect sizes, but power 

decrease compared to other methods as effect size increases. In large samples with 20% 

missingness at medium effect sizes, MBE and MICE perform slightly better than other 

methods, whereas, DA, CC, and FCS-BB* perform similarly, whereas FCS-BB performs the 

worst. MSEs are highest for FCS-BB across all conditions and lowest for MBE. With regards 

to other methods, FCS-BB* has slightly more variability in smaller samples and mean 

imputation has slightly lower variability; in other conditions methods have approximately
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Table 4.19 
Mediation Model Metrics – Mediator Categorical, Endogenous Categorical, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 0.001 0.000 0.000 0.553 0.106 0.051 1.000 1.000 1.000 0.000 0.000 0.000 0.015 0.001 0.000 
CC .14 -0.112 -0.002 -0.055 0.631 0.156 0.098 1.000 0.964 0.924 0.000 0.003 0.016 0.025 0.001 0.001 
CC .39 0.108 0.015 0.023 1.038 0.372 0.260 0.949 0.950 0.939 0.005 0.281 0.709 0.074 0.009 0.004 
CC .59 0.134 -0.004 0.020 1.516 0.574 0.406 0.945 0.940 0.948 0.035 0.712 0.973 0.171 0.022 0.011 

                 
Mean .00 -0.001 0.000 0.000 0.489 0.123 0.075 1.000 0.999 0.996 0.000 0.001 0.004 0.013 0.001 0.000 
Mean .14 -0.473 -0.140 -0.127 0.548 0.154 0.102 0.997 0.941 0.755 0.000 0.025 0.111 0.019 0.003 0.002 
Mean .39 -0.097 -0.181 -0.140 0.844 0.315 0.221 0.925 0.761 0.641 0.004 0.346 0.559 0.052 0.014 0.011 
Mean .59 -0.106 -0.168 -0.160 1.211 0.474 0.336 0.885 0.754 0.618 0.043 0.642 0.775 0.113 0.033 0.029 

                 
MBE .00 0.000 0.000 0.000 0.198 0.038 0.019 0.994 0.995 0.993 0.006 0.005 0.007 0.001 0.000 0.000 
MBE .14 -0.769 -0.760 -0.769 0.210 0.047 0.028 0.982 0.699 0.545 0.015 0.038 0.130 0.001 0.000 0.000 
MBE .39 -0.761 -0.769 -0.762 0.264 0.086 0.059 0.630 0.017 0.000 0.062 0.509 0.815 0.016 0.014 0.014 
MBE .59 -0.771 -0.785 -0.781 0.323 0.117 0.081 0.206 0.000 0.000 0.195 0.805 0.978 0.078 0.076 0.074 

                 
DA .00 -0.001 0.000 0.000 0.564 0.105 0.050 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.000 0.000 
DA .14 -0.104 -0.070 -0.082 0.628 0.149 0.093 1.000 0.985 0.929 0.000 0.001 0.016 0.018 0.001 0.001 
DA .39 0.010 -0.051 -0.041 0.989 0.348 0.242 0.963 0.943 0.929 0.004 0.256 0.732 0.059 0.007 0.004 
DA .59 0.043 -0.065 -0.044 1.435 0.536 0.377 0.937 0.939 0.953 0.028 0.734 0.979 0.136 0.018 0.009 

                 
MICE .00 -0.001 0.000 0.000 0.580 0.109 0.052 1.000 1.000 1.000 0.000 0.000 0.000 0.013 0.000 0.000 
MICE .14 -0.076 -0.021 -0.019 0.646 0.154 0.096 1.000 0.993 0.938 0.000 0.002 0.020 0.021 0.001 0.001 
MICE .39 0.080 0.008 0.017 1.019 0.358 0.249 0.968 0.948 0.939 0.008 0.292 0.759 0.067 0.008 0.004 
MICE .59 0.115 -0.004 0.021 1.487 0.550 0.390 0.942 0.941 0.954 0.032 0.757 0.978 0.160 0.020 0.010 

                 
FCS-BB .00 -0.003 0.000 0.000 1.395 0.480 0.362 0.998 1.000 1.000 0.002 0.000 0.000 0.028 0.002 0.001 
FCS-BB .14 0.384 1.068 1.512 1.483 0.554 0.445 0.996 0.999 1.000 0.005 0.002 0.000 0.046 0.006 0.005 
FCS-BB .39 0.622 0.900 1.033 1.996 0.824 0.664 0.986 0.957 0.934 0.035 0.264 0.505 0.161 0.043 0.037 
FCS-BB .59 0.650 0.627 0.680 2.579 1.072 0.881 0.972 0.921 0.893 0.126 0.665 0.895 0.369 0.091 0.079 

                 
FCS-BB* .00 0.000 0.000 0.000 0.766 0.172 0.108 0.998 1.000 1.000 0.002 0.000 0.000 0.008 0.000 0.000 
FCS-BB* .14 0.041 -0.034 -0.024 0.831 0.220 0.154 0.997 1.000 1.000 0.006 0.002 0.005 0.012 0.001 0.000 
FCS-BB* .39 -0.020 -0.019 -0.013 1.186 0.440 0.347 0.984 0.981 0.996 0.042 0.314 0.589 0.051 0.008 0.003 
FCS-BB* .59 0.025 -0.018 -0.011 1.674 0.673 0.541 0.950 0.976 0.994 0.164 0.737 0.946 0.158 0.020 0.010 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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Table 4.20 
Mediation Model Metrics – Mediator Categorical, Endogenous Categorical, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 
Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 

                 
CC .00 -0.002 -0.001 0.000 0.751 0.133 0.065 1.000 1.000 1.000 0.000 0.000 0.000 0.024 0.001 0.000 
CC .14 0.324 -0.003 -0.035 0.835 0.193 0.115 0.998 0.980 0.940 0.000 0.002 0.008 0.039 0.002 0.001 
CC .39 0.140 0.016 -0.003 1.256 0.435 0.296 0.957 0.926 0.942 0.004 0.165 0.528 0.123 0.013 0.006 
CC .59 0.183 0.037 0.007 1.824 0.679 0.464 0.939 0.932 0.942 0.009 0.576 0.904 0.242 0.032 0.015 

                 
Mean .00 -0.006 -0.001 -0.001 0.631 0.197 0.133 1.000 0.997 0.992 0.000 0.003 0.008 0.024 0.002 0.001 
Mean .14 -0.229 -0.163 -0.263 0.672 0.216 0.148 0.998 0.958 0.696 0.002 0.032 0.166 0.031 0.006 0.004 
Mean .39 -0.148 -0.272 -0.295 0.912 0.341 0.234 0.914 0.573 0.438 0.008 0.397 0.549 0.076 0.028 0.026 
Mean .59 -0.261 -0.318 -0.356 1.224 0.477 0.326 0.802 0.541 0.440 0.041 0.511 0.502 0.162 0.069 0.065 

                 
MBE .00 -0.001 0.000 0.000 0.258 0.048 0.024 0.999 0.997 0.997 0.001 0.003 0.003 0.001 0.000 0.000 
MBE .14 -0.699 -0.754 -0.764 0.271 0.059 0.033 0.987 0.718 0.647 0.005 0.035 0.068 0.002 0.000 0.000 
MBE .39 -0.761 -0.770 -0.770 0.322 0.101 0.068 0.688 0.054 0.000 0.043 0.399 0.674 0.017 0.014 0.014 
MBE .59 -0.770 -0.780 -0.783 0.386 0.136 0.093 0.324 0.000 0.000 0.115 0.709 0.934 0.078 0.075 0.075 

                 
DA .00 -0.001 -0.001 0.000 0.722 0.127 0.062 1.000 1.000 1.000 0.000 0.000 0.000 0.015 0.000 0.000 
DA .14 0.307 -0.140 -0.092 0.785 0.173 0.103 1.000 1.000 0.968 0.000 0.000 0.007 0.025 0.001 0.001 
DA .39 0.008 -0.105 -0.122 1.139 0.375 0.253 0.995 0.925 0.922 0.000 0.171 0.556 0.073 0.009 0.004 
DA .59 -0.025 -0.099 -0.124 1.602 0.580 0.394 0.950 0.916 0.911 0.004 0.593 0.935 0.140 0.021 0.011 

                 
MICE .00 -0.002 -0.002 0.000 0.776 0.136 0.067 1.000 0.999 1.000 0.000 0.001 0.000 0.021 0.001 0.000 
MICE .14 0.531 -0.050 0.025 0.853 0.185 0.110 1.000 1.000 0.972 0.000 0.003 0.008 0.033 0.002 0.001 
MICE .39 0.144 0.020 -0.002 1.218 0.405 0.272 0.999 0.937 0.939 0.002 0.218 0.632 0.094 0.012 0.005 
MICE .59 0.114 0.031 0.002 1.738 0.627 0.426 0.959 0.931 0.949 0.009 0.652 0.950 0.187 0.026 0.012 

                 
FCS-BB .00 -0.006 -0.007 0.000 2.634 1.078 0.892 0.999 1.000 1.000 0.001 0.000 0.000 0.100 0.011 0.005 
FCS-BB .14 2.561 3.087 4.495 2.765 1.191 1.010 0.995 0.996 0.998 0.005 0.006 0.002 0.174 0.031 0.027 
FCS-BB .39 1.527 2.285 2.580 3.436 1.531 1.237 0.976 0.919 0.853 0.033 0.199 0.359 0.493 0.206 0.194 
FCS-BB .59 1.344 1.630 1.649 4.311 1.839 1.466 0.972 0.824 0.703 0.083 0.547 0.800 1.003 0.443 0.395 

                 
FCS-BB* .00 0.001 0.000 0.000 0.924 0.196 0.123 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.000 0.000 
FCS-BB* .14 -0.052 -0.045 -0.024 0.981 0.242 0.166 1.000 1.000 0.997 0.000 0.001 0.007 0.012 0.001 0.000 
FCS-BB* .39 -0.037 -0.035 -0.028 1.381 0.468 0.363 0.992 0.979 0.995 0.026 0.256 0.511 0.064 0.008 0.004 
FCS-BB* .59 0.042 -0.038 -0.018 1.959 0.723 0.565 0.956 0.985 0.995 0.143 0.731 0.924 0.195 0.020 0.010 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = modified fully conditional specification using Bayesian bootstrap. 
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similar MSEs. With regards to FMI, FCS-BB tends to overestimate the FMI at smaller effect 

sizes; other methods have comparable estimates and overestimate the amount of FMI in 

conditions (see Table 4.21). Supplemental figures for the results are presented in Appendix 

D. 

Table 4.21 
Mediation Model FMI Metric – Mediator Categorical, Endogenous Categorical 
  FMI – 10% Missingness  FMI – 20% Missingness  
Method Effect 100  500 1000 100  500 1000 

        
DA .00 0.137 0.131 0.132 0.245 0.236 0.236 
DA .14 0.142 0.136 0.132 0.251 0.245 0.251 
DA .39 0.149 0.141 0.139 0.260 0.262 0.261 
DA .59 0.156 0.148 0.143 0.279 0.270 0.268 

        
MICE .00 0.143 0.139 0.137 0.264 0.254 0.253 
MICE .14 0.147 0.141 0.139 0.270 0.267 0.271 
MICE .39 0.153 0.143 0.145 0.281 0.285 0.282 
MICE .59 0.157 0.143 0.146 0.293 0.292 0.292 

        
FCS-BB .00 0.226 0.310 0.362 0.376 0.540 0.598 
FCS-BB .14 0.212 0.302 0.318 0.393 0.504 0.540 
FCS-BB .39 0.190 0.188 0.174 0.342 0.353 0.374 
FCS-BB .59 0.157 0.134 0.146 0.294 0.288 0.305 

        
FCS-BB* .00 0.162 0.149 0.138 0.292 0.262 0.259 
FCS-BB* .14 0.158 0.147 0.136 0.290 0.263 0.259 
FCS-BB* .39 0.158 0.140 0.140 0.291 0.268 0.261 
FCS-BB* .59 0.158 0.146 0.143 0.295 0.269 0.265 
 
Note. DA = data augmentation; MICE = multiple imputation by chained equations; 
FCS-BB = fully conditional specification using Bayesian bootstrap; FCS-BB* = 
modified fully conditional specification using Bayesian bootstrap. 

 

4.2.3. Results: Moderated mediation models. Results of the MC simulation for a 

moderated mediation model with continuous mediator variable and continuous 

endogenous variable and missingness rates of 10% and 20% are displayed in Table 4.22 

and Table 4.23, respectively. As can be seen in the tables, only CC, MBE, and FCS-BB-JAV 

methods are relatively unbiased across all conditions, with lower biases for CC and MBE. 

Among other methods, mean imputation has the largest biases, whereas, FCS-BB-PI has the 
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lowest biases. Confidence interval lengths are narrowest for mean imputation and tend to 

be highest for FCS-BB methods (i.e., both PI and JAV); other methods have comparable 

confidence interval lengths. Similar to results on biases, for coverage probabilities only CC, 

MBE, and FCS-BB-JAV methods have approximately nominal or higher coverage 

probabilities in all conditions; MBE has slightly better coverage performance. Mean  

imputation has the lowest coverage probabilities across all conditions; for other methods, 

both DA and MICE have similar coverage probabilities, with below nominal rates at larger 

effect sizes. FCS-BB-PI also has lower than nominal coverage probabilities at medium and 

large effect sizes, however, this trend only occurs with 20% missingness and its coverage 

probabilities are higher than DA and MICE. All methods have below nominal Type I Error 

rates. In small samples at small effect sizes, MBE and the FCS methods have higher power 

than other methods. In medium sized samples with 20% missingness, MBE and mean 

imputation have slightly higher power relative to other methods, whereas, DA and MICE 

have slightly lower power relative to other methods; methods perform similarly across 

other conditions. MSEs are highest for mean imputation and generally lowest for MBE, CC, 

and FCS-BB-JAV methods. DA, MICE, and FCS-BB-PI have similar MSEs, which are lower 

than mean imputation, but larger than MBE, CC, and FCS-BB-JAV methods (especially with 

20% missingness). With regards to MI methods, FMI is most consistently estimated by FCS-

BB-JAV; other methods perform similarly and overestimate the true amount of missing 

information (see Table 4.24). Supplemental figures for the results are presented in 

Appendix D. 

Results of the MC simulation for a moderated mediation model with continuous 

mediator variable and categorical endogenous variable and missingness rates of 10% and
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Table 4.22 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Continuous, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 0.001 0.000 0.000 0.128 0.023 0.012 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
CC .14 0.009 -0.007 0.006 0.276 0.106 0.075 0.917 0.938 0.933 0.055 0.921 1.000 0.005 0.001 0.000 
CC .39 -0.007 0.007 0.002 0.677 0.285 0.199 0.933 0.942 0.957 0.979 1.000 1.000 0.031 0.005 0.002 
CC .59 0.004 -0.003 -0.001 0.993 0.416 0.292 0.942 0.946 0.953 1.000 1.000 1.000 0.067 0.012 0.005 

                 
Mean .00 0.001 0.000 0.000 0.104 0.019 0.010 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
Mean .14 -0.134 -0.137 -0.125 0.227 0.090 0.063 0.877 0.870 0.853 0.067 0.927 1.000 0.003 0.001 0.000 
Mean .39 -0.171 -0.144 -0.146 0.554 0.240 0.168 0.792 0.660 0.456 0.976 1.000 1.000 0.036 0.012 0.010 
Mean .59 -0.177 -0.161 -0.159 0.827 0.357 0.251 0.721 0.367 0.125 0.999 1.000 1.000 0.130 0.064 0.056 

                 
MBE .00 0.001 0.000 0.000 0.196 0.034 0.017 0.995 0.991 0.997 0.005 0.009 0.003 0.001 0.000 0.000 
MBE .14 0.013 -0.008 0.007 0.321 0.110 0.076 0.948 0.958 0.945 0.235 0.963 1.000 0.005 0.001 0.000 
MBE .39 -0.008 0.007 0.002 0.704 0.283 0.197 0.949 0.939 0.953 0.988 1.000 1.000 0.030 0.005 0.002 
MBE .59 0.006 -0.003 -0.001 1.021 0.415 0.291 0.947 0.940 0.950 1.000 1.000 1.000 0.065 0.012 0.005 

                 
DA .00 0.001 0.000 0.000 0.125 0.023 0.012 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
DA .14 -0.128 -0.114 -0.102 0.254 0.100 0.070 0.908 0.893 0.889 0.032 0.885 0.997 0.003 0.001 0.000 
DA .39 -0.131 -0.091 -0.094 0.645 0.278 0.195 0.875 0.835 0.750 0.960 1.000 1.000 0.035 0.009 0.006 
DA .59 -0.099 -0.083 -0.079 1.016 0.437 0.307 0.840 0.758 0.666 1.000 1.000 1.000 0.103 0.030 0.021 

                 
MICE .00 0.001 0.000 0.000 0.124 0.023 0.012 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
MICE .14 -0.134 -0.114 -0.104 0.255 0.100 0.070 0.908 0.900 0.889 0.027 0.886 0.998 0.003 0.001 0.000 
MICE .39 -0.131 -0.092 -0.095 0.647 0.278 0.195 0.872 0.819 0.748 0.964 1.000 1.000 0.035 0.009 0.006 
MICE .59 -0.100 -0.084 -0.079 1.017 0.436 0.307 0.848 0.748 0.669 1.000 1.000 1.000 0.104 0.030 0.020 

                 
FCS-BB-PI .00 0.001 0.000 0.000 0.142 0.038 0.024 0.996 0.999 1.000 0.004 0.001 0.000 0.000 0.000 0.000 
FCS-BB-PI .14 -0.108 -0.098 -0.089 0.244 0.116 0.096 0.906 0.959 0.982 0.183 0.913 0.997 0.004 0.001 0.000 
FCS-BB-PI .39 -0.102 -0.084 -0.086 0.646 0.351 0.288 0.876 0.922 0.922 0.984 1.000 1.000 0.038 0.009 0.007 
FCS-BB-PI .59 -0.095 -0.076 -0.074 1.121 0.613 0.506 0.887 0.927 0.930 1.000 1.000 1.000 0.111 0.031 0.022 

                 
FCS-BB-JAV .00 0.001 0.000 0.000 0.167 0.043 0.027 0.999 0.999 1.000 0.001 0.001 0.000 0.000 0.000 0.000 
FCS-BB-JAV .14 -0.028 -0.024 -0.022 0.281 0.130 0.106 0.927 0.981 0.992 0.183 0.916 0.998 0.004 0.001 0.000 
FCS-BB-JAV .39 -0.027 -0.008 -0.010 0.712 0.371 0.302 0.922 0.985 0.987 0.985 1.000 1.000 0.035 0.006 0.003 
FCS-BB-JAV .59 -0.018 -0.005 -0.004 1.162 0.612 0.498 0.935 0.987 0.995 1.000 1.000 1.000 0.092 0.016 0.008 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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Table 4.23 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Continuous, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 0.000 0.000 0.000 0.157 0.027 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
CC .14 -0.011 -0.009 -0.012 0.303 0.116 0.081 0.906 0.928 0.942 0.036 0.845 0.998 0.006 0.001 0.000 
CC .39 0.012 0.003 0.002 0.749 0.307 0.215 0.941 0.942 0.947 0.960 1.000 1.000 0.039 0.006 0.003 
CC .59 0.004 0.000 0.002 1.098 0.452 0.316 0.935 0.948 0.954 0.999 1.000 1.000 0.086 0.013 0.006 

                 
Mean .00 0.000 0.000 0.000 0.102 0.018 0.009 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mean .14 -0.290 -0.270 -0.268 0.201 0.081 0.057 0.802 0.735 0.631 0.055 0.885 0.999 0.003 0.001 0.001 
Mean .39 -0.293 -0.284 -0.281 0.500 0.214 0.151 0.615 0.167 0.036 0.960 1.000 1.000 0.055 0.034 0.031 
Mean .59 -0.325 -0.306 -0.302 0.754 0.325 0.229 0.400 0.018 0.000 0.995 1.000 1.000 0.279 0.197 0.184 

                 
MBE .00 0.000 0.000 0.000 0.237 0.039 0.020 0.995 0.993 0.996 0.005 0.006 0.004 0.001 0.000 0.000 
MBE .14 -0.006 -0.008 -0.012 0.357 0.118 0.081 0.938 0.961 0.954 0.183 0.962 0.998 0.005 0.001 0.000 
MBE .39 0.016 0.002 0.001 0.776 0.301 0.211 0.951 0.944 0.942 0.981 1.000 1.000 0.037 0.006 0.003 
MBE .59 0.007 0.001 0.003 1.115 0.449 0.312 0.940 0.947 0.955 1.000 1.000 1.000 0.082 0.013 0.006 

                 
DA .00 0.000 0.000 0.000 0.147 0.026 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
DA .14 -0.251 -0.223 -0.223 0.262 0.101 0.070 0.892 0.850 0.804 0.006 0.751 0.993 0.004 0.001 0.001 
DA .39 -0.192 -0.184 -0.180 0.679 0.285 0.200 0.828 0.649 0.437 0.891 1.000 1.000 0.045 0.018 0.015 
DA .59 -0.184 -0.160 -0.155 1.088 0.465 0.328 0.757 0.527 0.310 0.997 1.000 1.000 0.172 0.068 0.056 

                 
MICE .00 0.000 0.000 0.000 0.149 0.026 0.013 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
MICE .14 -0.248 -0.223 -0.223 0.263 0.101 0.070 0.896 0.855 0.797 0.016 0.742 0.995 0.004 0.001 0.001 
MICE .39 -0.196 -0.184 -0.180 0.684 0.285 0.201 0.825 0.640 0.435 0.880 1.000 1.000 0.046 0.018 0.015 
MICE .59 -0.186 -0.160 -0.155 1.094 0.466 0.329 0.763 0.540 0.307 0.997 1.000 1.000 0.171 0.068 0.055 

                 
FCS-BB-PI .00 -0.001 0.000 0.000 0.146 0.038 0.024 0.999 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 
FCS-BB-PI .14 -0.151 -0.144 -0.142 0.236 0.112 0.092 0.896 0.912 0.945 0.137 0.813 0.986 0.003 0.001 0.001 
FCS-BB-PI .39 -0.147 -0.139 -0.128 0.628 0.351 0.291 0.815 0.772 0.726 0.974 1.000 1.000 0.049 0.020 0.016 
FCS-BB-PI .59 -0.125 -0.124 -0.120 1.117 0.632 0.531 0.792 0.701 0.674 1.000 1.000 1.000 0.175 0.079 0.061 

                 
FCS-BB-JAV .00 -0.001 0.000 0.000 0.199 0.049 0.031 0.997 1.000 1.000 0.003 0.000 0.000 0.001 0.000 0.000 
FCS-BB-JAV .14 -0.057 -0.054 -0.033 0.314 0.140 0.114 0.929 0.971 0.994 0.145 0.822 0.984 0.005 0.001 0.000 
FCS-BB-JAV .39 -0.036 -0.010 -0.005 0.759 0.393 0.321 0.940 0.979 0.991 0.977 1.000 1.000 0.037 0.007 0.004 
FCS-BB-JAV .59 -0.022 -0.009 -0.003 1.213 0.637 0.522 0.933 0.975 0.993 1.000 1.000 1.000 0.102 0.018 0.009 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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Table 4.24 
Moderated Mediation Model FMI Metric – Mediator Continuous, Endogenous Continuous 
  FMI – 10% Missingness  FMI – 20% Missingness  

Method Effect 100  500 1000 100  500 1000 
        

DA .00 0.103 0.096 0.096 0.181 0.175 0.177 
DA .14 0.119 0.113 0.118 0.216 0.213 0.218 
DA .39 0.156 0.154 0.153 0.262 0.261 0.257 
DA .59 0.200 0.208 0.209 0.308 0.314 0.319 

        
MICE .00 0.101 0.096 0.093 0.189 0.176 0.173 
MICE .14 0.120 0.115 0.116 0.217 0.218 0.217 
MICE .39 0.160 0.154 0.155 0.269 0.262 0.262 
MICE .59 0.200 0.205 0.208 0.313 0.314 0.321 

        
FCS-BB-PI .00 0.111 0.098 0.096 0.189 0.182 0.173 
FCS-BB-PI .14 0.110 0.115 0.108 0.200 0.201 0.199 
FCS-BB-PI .39 0.157 0.155 0.157 0.257 0.254 0.257 
FCS-BB-PI .59 0.233 0.245 0.251 0.319 0.342 0.349 

        
FCS-BB-JAV .00 0.095 0.098 0.098 0.179 0.189 0.188 
FCS-BB-JAV .14 0.096 0.101 0.103 0.186 0.196 0.197 
FCS-BB-JAV .39 0.097 0.092 0.095 0.182 0.181 0.183 
FCS-BB-JAV .59 0.088 0.086 0.089 0.171 0.177 0.176 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive 
imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping 
and just another variable imputation. 

 

20% are displayed in Table 4.25 and Table 4.26, respectively. In small sample sizes, FCS-

BB-JAV is the least biased method; CC and MBE are both highly biased. In small samples, 

DA, MICE, and FCS-BB-PI perform similarly such that these methods are slightly biased in 

conditions with 10% missingness; however, in 20% missingness, FCS-BB-PI tends to be 

less biased than DA and MICE. Across other conditions, only CC and FCS-BB-JAV are 

relatively unbiased, with less bias for CC; other methods underestimate the true indirect 

effect, with the most biased results for MBE. For confidence interval lengths, in small 

sample sizes confidence interval lengths are widest for FCS-BB-JAV and CC methods and 

lowest for MBE; across other conditions MBE has slightly narrower intervals and the FCS 
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Table 4.25 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Categorical, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 -0.002 0.000 0.000 0.296 0.048 0.023 1.000 1.000 0.999 0.000 0.000 0.001 0.005 0.000 0.000 
CC .14 0.078 0.021 0.003 0.500 0.179 0.122 0.945 0.932 0.938 0.005 0.358 0.755 0.018 0.002 0.001 
CC .39 0.196 0.041 0.014 1.431 0.550 0.382 0.951 0.941 0.950 0.472 1.000 1.000 0.187 0.022 0.010 
CC .59 0.172 0.022 0.021 2.530 0.963 0.676 0.953 0.940 0.950 0.850 1.000 1.000 0.543 0.066 0.033 

                 
Mean .00 -0.001 0.000 0.000 0.251 0.042 0.021 1.000 1.000 0.999 0.000 0.000 0.001 0.003 0.000 0.000 
Mean .14 -0.076 -0.108 -0.128 0.427 0.157 0.108 0.924 0.909 0.891 0.007 0.354 0.749 0.014 0.002 0.001 
Mean .39 -0.025 -0.144 -0.167 1.185 0.469 0.326 0.899 0.819 0.733 0.460 1.000 1.000 0.115 0.024 0.017 
Mean .59 -0.067 -0.174 -0.168 2.041 0.804 0.568 0.878 0.719 0.599 0.824 1.000 1.000 0.351 0.107 0.079 

                 
MBE .00 -0.002 0.000 0.000 0.449 0.051 0.024 0.995 0.998 0.993 0.005 0.002 0.007 0.002 0.000 0.000 
MBE .14 -0.414 -0.386 -0.387 0.542 0.124 0.080 0.909 0.853 0.711 0.037 0.488 0.798 0.008 0.002 0.001 
MBE .39 -0.378 -0.422 -0.431 0.959 0.298 0.203 0.838 0.134 0.004 0.454 0.999 1.000 0.093 0.072 0.071 
MBE .59 -0.438 -0.481 -0.481 1.379 0.432 0.297 0.543 0.001 0.000 0.718 1.000 1.000 0.462 0.461 0.455 

                 
DA .00 -0.001 0.000 0.000 0.283 0.048 0.023 1.000 1.000 0.999 0.000 0.000 0.001 0.003 0.000 0.000 
DA .14 -0.083 -0.105 -0.122 0.465 0.168 0.114 0.956 0.924 0.912 0.001 0.275 0.702 0.012 0.002 0.001 
DA .39 -0.021 -0.113 -0.135 1.308 0.512 0.355 0.937 0.882 0.840 0.321 1.000 1.000 0.108 0.021 0.013 
DA .59 -0.093 -0.176 -0.173 2.275 0.881 0.623 0.914 0.756 0.653 0.683 1.000 1.000 0.293 0.103 0.080 

                 
MICE .00 -0.002 0.000 0.000 0.285 0.048 0.023 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
MICE .14 -0.082 -0.095 -0.113 0.466 0.168 0.115 0.955 0.921 0.912 0.001 0.298 0.709 0.012 0.002 0.001 
MICE .39 -0.014 -0.101 -0.122 1.306 0.513 0.357 0.928 0.888 0.855 0.333 0.999 1.000 0.112 0.021 0.012 
MICE .59 -0.066 -0.156 -0.151 2.295 0.890 0.629 0.923 0.801 0.712 0.709 1.000 1.000 0.314 0.092 0.067 

                 
FCS-BB-PI .00 -0.001 0.000 0.000 0.361 0.080 0.049 0.996 1.000 1.000 0.004 0.000 0.000 0.002 0.000 0.000 
FCS-BB-PI .14 -0.076 -0.072 -0.068 0.524 0.204 0.159 0.969 0.979 0.990 0.058 0.320 0.537 0.011 0.002 0.001 
FCS-BB-PI .39 -0.041 -0.064 -0.055 1.312 0.596 0.477 0.938 0.956 0.964 0.693 1.000 1.000 0.116 0.020 0.012 
FCS-BB-PI .59 -0.043 -0.051 -0.049 2.162 0.988 0.807 0.927 0.890 0.878 0.930 1.000 1.000 0.303 0.096 0.074 

                 
FCS-BB-JAV .00 -0.002 0.000 0.000 0.439 0.091 0.055 0.996 1.000 1.000 0.004 0.000 0.000 0.003 0.000 0.000 
FCS-BB-JAV .14 0.014 -0.015 -0.029 0.634 0.232 0.179 0.974 0.980 0.989 0.056 0.331 0.542 0.016 0.002 0.001 
FCS-BB-JAV .39 0.045 0.035 0.001 1.594 0.683 0.544 0.929 0.978 0.995 0.690 1.000 1.000 0.193 0.023 0.009 
FCS-BB-JAV .59 0.039 -0.027 -0.035 2.695 1.151 0.929 0.920 0.984 0.992 0.915 1.000 1.000 0.521 0.062 0.033 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 

 
  



www.manaraa.com

 

 

 

1
8

1
 

Table 4.26 
Moderated Mediation Model Metrics – Mediator Continuous, Endogenous Categorical, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 0.003 0.001 0.000 0.340 0.055 0.027 1.000 1.000 1.000 0.000 0.000 0.000 0.005 0.000 0.000 
CC .14 0.152 0.020 0.035 0.581 0.195 0.134 0.960 0.941 0.944 0.004 0.292 0.701 0.024 0.003 0.001 
CC .39 0.213 0.030 0.016 1.598 0.594 0.414 0.961 0.958 0.955 0.377 0.999 1.000 0.215 0.023 0.011 
CC .59 0.275 0.035 0.014 2.921 1.051 0.728 0.967 0.958 0.966 0.779 1.000 1.000 0.864 0.075 0.032 

                 
Mean .00 0.002 0.000 0.000 0.245 0.042 0.021 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
Mean .14 -0.156 -0.237 -0.222 0.422 0.149 0.103 0.905 0.836 0.807 0.005 0.288 0.649 0.013 0.002 0.001 
Mean .39 -0.169 -0.297 -0.309 1.120 0.432 0.302 0.841 0.570 0.319 0.354 0.998 1.000 0.116 0.045 0.042 
Mean .59 -0.169 -0.304 -0.323 1.933 0.746 0.516 0.803 0.412 0.126 0.734 1.000 1.000 0.397 0.223 0.222 

                 
MBE .00 0.003 0.000 0.000 0.614 0.059 0.027 0.993 0.994 0.994 0.007 0.006 0.006 0.002 0.000 0.000 
MBE .14 -0.357 -0.382 -0.374 0.640 0.136 0.088 0.929 0.869 0.763 0.026 0.447 0.759 0.010 0.002 0.001 
MBE .39 -0.364 -0.428 -0.430 1.155 0.323 0.220 0.893 0.157 0.016 0.361 0.996 1.000 0.098 0.074 0.071 
MBE .59 -0.402 -0.477 -0.484 1.619 0.469 0.321 0.668 0.000 0.000 0.619 1.000 1.000 0.435 0.455 0.460 

                 
DA .00 0.003 0.000 0.000 0.308 0.053 0.026 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
DA .14 -0.186 -0.228 -0.218 0.495 0.169 0.115 0.981 0.901 0.884 0.000 0.154 0.563 0.011 0.002 0.001 
DA .39 -0.173 -0.258 -0.263 1.298 0.498 0.350 0.914 0.749 0.556 0.134 0.996 1.000 0.090 0.036 0.031 
DA .59 -0.211 -0.313 -0.324 2.257 0.848 0.591 0.885 0.470 0.139 0.436 1.000 1.000 0.293 0.221 0.217 

                 
MICE .00 0.003 0.000 0.000 0.313 0.054 0.026 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 0.000 
MICE .14 -0.165 -0.208 -0.196 0.505 0.171 0.117 0.986 0.903 0.892 0.001 0.176 0.577 0.012 0.002 0.001 
MICE .39 -0.148 -0.233 -0.238 1.324 0.506 0.353 0.919 0.781 0.629 0.146 0.998 1.000 0.092 0.033 0.027 
MICE .59 -0.170 -0.277 -0.289 2.328 0.871 0.604 0.902 0.566 0.256 0.474 1.000 1.000 0.298 0.184 0.177 

                 
FCS-BB-PI .00 -0.001 0.000 0.000 0.355 0.080 0.050 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 0.000 
FCS-BB-PI .14 -0.116 -0.101 -0.087 0.515 0.196 0.153 0.968 0.969 0.977 0.045 0.271 0.468 0.011 0.002 0.001 
FCS-BB-PI .39 -0.099 -0.091 -0.081 1.208 0.543 0.440 0.932 0.866 0.831 0.602 0.997 1.000 0.095 0.034 0.029 
FCS-BB-PI .59 -0.084 -0.071 -0.062 1.928 0.878 0.710 0.905 0.620 0.355 0.901 1.000 1.000 0.298 0.209 0.205 

                 
FCS-BB-JAV .00 0.002 0.000 0.000 0.510 0.103 0.063 1.000 1.000 1.000 0.000 0.000 0.000 0.003 0.000 0.000 
FCS-BB-JAV .14 0.075 -0.026 -0.005 0.734 0.253 0.196 0.971 0.985 0.996 0.055 0.282 0.476 0.021 0.002 0.001 
FCS-BB-JAV .39 0.051 0.044 -0.021 1.741 0.710 0.568 0.947 0.984 0.993 0.606 0.997 1.000 0.201 0.022 0.010 
FCS-BB-JAV .59 0.049 -0.041 -0.011 2.849 1.154 0.920 0.931 0.971 0.977 0.882 1.000 1.000 0.568 0.068 0.044 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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methods have slightly wider intervals compared to other methods. In terms of coverage 

probabilities, only the FCS-BB-JAV method has approximately nominal or higher coverage 

across all conditions. Moreover, across all conditions, MBE and mean imputation have the 

lowest coverage rates, with lower coverage for MBE; for other methods, CC has the highest 

coverage probabilities, whereas, DA has the lowest coverage probabilities.  

All methods have lower than nominal Type I Error rates. In small samples, FCS 

methods have higher power across all conditions, whereas, DA and MICE have the lowest 

power. In medium sample sizes, MBE has the highest power, whereas, DA and MICE have 

the lowest power. In large sample sizes, with small effect sizes, FCS methods have lower 

power and MBE has slightly higher power than other methods; other methods perform 

similar with 10% missingness, but with 20% missingness, DA and MICE have slightly lower 

power than CC and mean imputation. For MSEs, estimates are highest for CC in small 

samples, whereas, highest for MBE in medium and large sized samples. Relative to other 

methods, DA, MICE, and FCS-BB-PI generally have the lower MSEs for small samples, 

whereas, FCS-BB-JAV and CC generally have lower MSEs for medium and large sized 

samples. With regards to MI methods and FMI estimation, all methods have comparable 

performance with null and small effect sizes; for larger effect sizes, all methods tend to 

overestimate the FMI (see Table 4.27). Supplemental figures for the results are presented 

in Appendix D. 

Results of the MC simulation for a moderated mediation model with categorical 

mediator variable and continuous endogenous variable and missingness rates of 10% and 

20% are displayed in Table 4.28 and Table 4.29, respectively. In small sample sizes, FCS- 

BB-JAV 
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Table 4.27 
Moderated Mediation Model FMI Metric – Mediator Continuous, Endogenous Categorical 
  FMI – 10% Missingness  FMI – 20% Missingness  

Method Effect 100  500 1000 100  500 1000 
        

DA .00 0.108 0.094 0.095 0.178 0.171 0.173 
DA .14 0.118 0.121 0.119 0.211 0.223 0.223 
DA .39 0.175 0.168 0.167 0.278 0.280 0.283 
DA .59 0.231 0.228 0.235 0.347 0.344 0.351 

        
MICE .00 0.107 0.094 0.096 0.181 0.177 0.175 
MICE .14 0.125 0.119 0.121 0.220 0.227 0.228 
MICE .39 0.168 0.162 0.165 0.284 0.284 0.281 
MICE .59 0.222 0.224 0.229 0.347 0.345 0.346 

        
FCS-BB-PI .00 0.118 0.100 0.100 0.204 0.190 0.184 
FCS-BB-PI .14 0.126 0.120 0.122 0.224 0.219 0.221 
FCS-BB-PI .39 0.200 0.171 0.177 0.301 0.293 0.295 
FCS-BB-PI .59 0.262 0.247 0.249 0.374 0.371 0.369 

        
FCS-BB-JAV .00 0.110 0.103 0.105 0.205 0.194 0.195 
FCS-BB-JAV .14 0.123 0.120 0.122 0.230 0.231 0.239 
FCS-BB-JAV .39 0.174 0.167 0.168 0.299 0.297 0.300 
FCS-BB-JAV .59 0.235 0.231 0.222 0.380 0.377 0.379 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive 
imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping 
and just another variable imputation. 

 
 

is the least biased method; in medium to large sample sizes, both CC and FCS-BB-JAV are 

the only methods that are relatively unbiased, with less bias for CC; other methods 

generally demonstrate stronger bias in all conditions, with highest biases for MBE and 

lowest biases for MICE. In small sample sizes, confidence interval lengths are widest for 

FCS-BB-JAV and CC methods and lowest for mean imputation and MBE. Across other 

conditions, MBE has slightly narrower intervals and the FCS methods have slightly wider 

intervals compared to other methods; DA, MICE, and CC have comparable confidence 

interval lengths. With regards to coverage probabilities, only the FCS-BB-JAV method has 

approximately nominal or higher coverage rates across all conditions. Both mean   
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Table 4.28 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Continuous, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 -0.002 0.000 0.000 0.546 0.092 0.047 1.000 1.000 1.000 0.000 0.000 0.000 0.015 0.000 0.000 
CC .14 0.147 0.010 0.030 0.780 0.235 0.160 0.971 0.905 0.933 0.001 0.077 0.436 0.039 0.003 0.002 
CC .39 0.103 0.018 0.026 1.835 0.698 0.490 0.930 0.939 0.951 0.099 0.999 1.000 0.237 0.035 0.017 
CC .59 0.127 0.027 0.013 3.039 1.182 0.823 0.936 0.954 0.962 0.505 1.000 1.000 0.819 0.096 0.042 

                 
Mean .00 -0.001 0.000 0.000 0.440 0.077 0.039 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.000 0.000 
Mean .14 -0.095 -0.196 -0.185 0.620 0.192 0.130 0.946 0.861 0.854 0.001 0.076 0.403 0.025 0.003 0.001 
Mean .39 -0.172 -0.215 -0.216 1.399 0.548 0.383 0.851 0.748 0.662 0.091 0.995 1.000 0.145 0.039 0.028 
Mean .59 -0.218 -0.252 -0.267 2.179 0.882 0.611 0.785 0.590 0.323 0.439 1.000 1.000 0.460 0.179 0.165 

                 
MBE .00 -0.001 0.000 0.000 0.542 0.076 0.037 0.993 0.994 0.995 0.007 0.006 0.005 0.004 0.000 0.000 
MBE .14 -0.417 -0.494 -0.483 0.693 0.141 0.090 0.896 0.835 0.708 0.026 0.336 0.754 0.012 0.002 0.002 
MBE .39 -0.452 -0.491 -0.488 1.285 0.381 0.260 0.896 0.286 0.040 0.362 0.999 1.000 0.139 0.098 0.092 
MBE .59 -0.459 -0.496 -0.502 1.970 0.617 0.423 0.760 0.068 0.002 0.743 1.000 1.000 0.602 0.502 0.499 

                 
DA .00 0.000 0.000 0.000 0.531 0.091 0.046 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.000 0.000 
DA .14 -0.045 -0.134 -0.117 0.724 0.217 0.148 0.992 0.899 0.909 0.000 0.046 0.344 0.028 0.003 0.001 
DA .39 -0.109 -0.141 -0.133 1.630 0.635 0.447 0.905 0.875 0.847 0.039 0.995 1.000 0.138 0.032 0.019 
DA .59 -0.100 -0.149 -0.161 2.726 1.072 0.747 0.892 0.851 0.764 0.294 1.000 1.000 0.454 0.109 0.079 

                 
MICE .00 0.000 0.000 0.000 0.534 0.092 0.046 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.000 0.000 
MICE .14 -0.020 -0.117 -0.087 0.736 0.219 0.150 0.995 0.899 0.909 0.000 0.045 0.370 0.030 0.003 0.001 
MICE .39 -0.087 -0.114 -0.109 1.651 0.644 0.453 0.905 0.895 0.870 0.043 0.996 1.000 0.144 0.031 0.017 
MICE .59 -0.060 -0.116 -0.126 2.780 1.091 0.759 0.900 0.884 0.838 0.340 1.000 1.000 0.478 0.098 0.062 

                 
FCS-BB-PI .00 0.000 -0.000 0.000 0.688 0.155 0.097 0.998 1.000 1.000 0.002 0.000 0.000 0.007 0.000 0.000 
FCS-BB-PI .14 -0.091 -0.084 -0.073 0.862 0.277 0.211 0.989 0.966 0.992 0.018 0.095 0.257 0.023 0.003 0.001 
FCS-BB-PI .39 -0.114 -0.101 -0.087 1.678 0.753 0.611 0.934 0.966 0.978 0.360 0.998 1.000 0.148 0.032 0.018 
FCS-BB-PI .59 -0.077 -0.074 -0.075 2.744 1.266 1.018 0.931 0.954 0.966 0.786 1.000 1.000 0.487 0.099 0.064 

                 
FCS-BB-JAV .00 0.001 -0.000 0.000 0.825 0.179 0.111 0.995 1.000 1.000 0.005 0.000 0.000 0.010 0.000 0.000 
FCS-BB-JAV .14 0.015 -0.014 -0.024 1.035 0.319 0.243 0.991 0.982 0.996 0.011 0.091 0.264 0.034 0.003 0.002 
FCS-BB-JAV .39 0.042 0.011 0.020 2.076 0.884 0.714 0.949 0.981 0.994 0.351 0.996 1.000 0.217 0.036 0.018 
FCS-BB-JAV .59 0.049 0.034 0.017 3.446 1.512 1.208 0.941 0.977 0.995 0.786 1.000 1.000 0.864 0.105 0.045 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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Table 4.29 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Continuous, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 0.002 0.000 0.000 0.677 0.110 0.054 1.000 1.000 1.000 0.000 0.000 0.000 0.022 0.000 0.000 
CC .14 0.128 0.035 0.018 0.933 0.260 0.174 0.984 0.896 0.929 0.001 0.059 0.294 0.053 0.005 0.002 
CC .39 0.163 0.035 0.004 2.092 0.769 0.523 0.935 0.941 0.932 0.067 0.989 1.000 0.311 0.038 0.019 
CC .59 0.147 0.033 0.016 3.376 1.286 0.892 0.942 0.953 0.956 0.355 1.000 1.000 0.874 0.111 0.054 

                 
Mean .00 0.000 0.000 0.000 0.447 0.078 0.038 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.000 0.000 
Mean .14 -0.315 -0.351 -0.349 0.583 0.173 0.116 0.941 0.767 0.748 0.001 0.050 0.268 0.020 0.003 0.002 
Mean .39 -0.336 -0.388 -0.394 1.238 0.475 0.327 0.766 0.473 0.221 0.072 0.974 1.000 0.147 0.071 0.065 
Mean .59 -0.382 -0.428 -0.442 1.884 0.741 0.510 0.638 0.182 0.028 0.295 1.000 1.000 0.543 0.396 0.399 

                 
MBE .00 0.002 0.000 0.000 0.668 0.088 0.042 0.998 0.997 0.989 0.002 0.003 0.011 0.006 0.000 0.000 
MBE .14 -0.440 -0.483 -0.496 0.840 0.156 0.096 0.925 0.850 0.739 0.017 0.279 0.661 0.016 0.003 0.002 
MBE .39 -0.450 -0.497 -0.504 1.493 0.409 0.272 0.905 0.327 0.053 0.295 0.993 1.000 0.154 0.100 0.099 
MBE .59 -0.463 -0.502 -0.509 2.256 0.659 0.449 0.820 0.086 0.003 0.625 0.999 1.000 0.619 0.514 0.515 

                 
DA .00 0.003 0.000 0.000 0.606 0.105 0.051 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.000 0.000 
DA .14 -0.209 -0.234 -0.249 0.791 0.220 0.147 1.000 0.872 0.882 0.000 0.024 0.154 0.023 0.003 0.001 
DA .39 -0.206 -0.275 -0.279 1.676 0.620 0.427 0.902 0.772 0.616 0.009 0.969 1.000 0.137 0.045 0.038 
DA .59 -0.245 -0.293 -0.302 2.650 1.028 0.715 0.871 0.626 0.346 0.095 1.000 1.000 0.420 0.213 0.201 

                 
MICE .00 0.002 -0.001 0.000 0.626 0.108 0.053 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.000 0.000 
MICE .14 -0.192 -0.201 -0.215 0.813 0.227 0.151 1.000 0.884 0.894 0.000 0.020 0.167 0.025 0.003 0.001 
MICE .39 -0.150 -0.226 -0.234 1.744 0.644 0.443 0.912 0.824 0.713 0.015 0.977 1.000 0.152 0.039 0.031 
MICE .59 -0.186 -0.235 -0.246 2.765 1.077 0.748 0.884 0.745 0.522 0.130 1.000 1.000 0.418 0.164 0.145 

                 
FCS-BB-PI .00 0.002 -0.000 -0.000 0.691 0.159 0.099 0.998 1.000 1.000 0.002 0.000 0.000 0.006 0.000 0.000 
FCS-BB-PI .14 -0.184 -0.174 -0.161 0.851 0.269 0.203 0.994 0.960 0.988 0.013 0.069 0.149 0.019 0.003 0.002 
FCS-BB-PI .39 -0.144 -0.131 -0.122 1.611 0.699 0.558 0.935 0.912 0.896 0.310 0.983 1.000 0.150 0.042 0.033 
FCS-BB-PI .59 -0.154 -0.148 -0.138 2.473 1.146 0.922 0.912 0.834 0.770 0.726 1.000 1.000 0.441 0.174 0.156 

                 
FCS-BB-JAV .00 0.003 -0.000 0.000 0.978 0.209 0.129 0.997 1.000 1.000 0.003 0.000 0.000 0.013 0.000 0.000 
FCS-BB-JAV .14 0.023 0.024 0.021 1.241 0.358 0.266 0.989 0.981 0.996 0.016 0.070 0.151 0.043 0.004 0.002 
FCS-BB-JAV .39 0.051 0.035 0.014 2.391 0.963 0.762 0.949 0.984 0.995 0.315 0.987 1.000 0.321 0.038 0.020 
FCS-BB-JAV .59 0.054 0.047 0.024 3.783 1.630 1.297 0.952 0.982 0.992 0.733 1.000 1.000 0.911 0.118 0.057 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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imputation and MBE have poor coverage probabilities, with poorer performance in larger 

samples with larger effect sizes. For DA, MICE, and CC methods, CC has the best coverage 

performance, whereas, DA has the worst coverage performance across conditions.  

All methods have lower than nominal Type I Error rates. In small samples, MBE and 

FCS methods have highest power across all conditions, with slightly higher power for FCS 

methods at larger effect sizes. On the contrary, DA and MICE have the lowest power in 

small sample sizes. In medium sample sizes, MBE has the highest power, whereas, other 

methods have comparable performance. In large sample sizes, MBE also has higher power 

than other methods; FCS methods have slightly lower power than other methods in at 

small effects with 10% missingness; with 20% missingness, CC and mean imputation have 

higher power than DA, MICE and FCS methods, which perform similarly. In terms of MSEs, 

estimates are highest for FCS-BB-JAV and CC in small samples, whereas, highest for MBE 

and mean imputation in medium and large sized samples; other methods perform 

comparable. With regards to MI methods, the FCS-BB-JAV method accurately estimates the 

fraction of missing information; other methods tend to overestimate the FMI (see Table 

4.30). Supplemental figures for the results are presented in Appendix D. 

Results of the final MC simulation for a moderated mediation model with categorical 

mediator variable and categorical endogenous variable and missingness rates of 10% and 

20% are displayed in Table 4.31 and Table 4.32, respectively. In small sample sizes, DA, 

MICE, and FCS-BB (both PI and JAV) are the least biased methods, with lower biases for 

FCS-BB-JAV; other methods exhibit larger biases, with higher biases for MBE and mean 

imputation. In medium to large sample sizes, CC and FCS-BB-JAV are the least biased 

methods, with a tendency for CC to have lower biases. Across all conditions, MBE has the  
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Table 4.30 
Moderated Mediation Model FMI Metric – Mediator Categorical, Endogenous Continuous 
  FMI – 10% Missingness  FMI – 20% Missingness  

Method Effect 100  500 1000 100  500 1000 
        

DA .00 0.099 0.093 0.093 0.170 0.166 0.165 
DA .14 0.108 0.108 0.113 0.190 0.195 0.202 
DA .39 0.136 0.136 0.140 0.227 0.237 0.234 
DA .59 0.167 0.163 0.168 0.261 0.270 0.274 

        
MICE .00 0.099 0.098 0.094 0.176 0.173 0.173 
MICE .14 0.110 0.107 0.110 0.190 0.205 0.210 
MICE .39 0.132 0.128 0.131 0.226 0.236 0.236 
MICE .59 0.156 0.152 0.152 0.252 0.263 0.269 

        
FCS-BB-PI .00 0.118 0.106 0.103 0.213 0.190 0.184 
FCS-BB-PI .14 0.121 0.111 0.109 0.218 0.202 0.200 
FCS-BB-PI .39 0.137 0.131 0.131 0.242 0.230 0.232 
FCS-BB-PI .59 0.158 0.148 0.146 0.259 0.258 0.255 

        
FCS-BB-JAV .00 0.104 0.094 0.091 0.199 0.180 0.172 
FCS-BB-JAV .14 0.103 0.092 0.094 0.198 0.185 0.184 
FCS-BB-JAV .39 0.110 0.095 0.094 0.200 0.194 0.188 
FCS-BB-JAV .59 0.105 0.097 0.097 0.200 0.191 0.187 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive 
imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping 
and just another variable imputation. 

 
 

narrowest confidence intervals, whereas FCS-BB-JAV has the widest, especially in small 

sample sizes. With regards to other methods, most differences arise in small sample sizes 

with larger effect sizes, with CC yielding the widest intervals and mean imputation yielding 

the narrowest intervals. For coverage probabilities, only the FCS-BB methods have  

approximately nominal or higher coverage rates across all conditions. In small samples 

mean imputation and MBE have poor coverage probabilities as effect sizes increase; in 

conditions with 10% missingness, mean imputation has better coverage than MBE, 

however, performance is similar for the two methods in conditions with 20% missingness. 

In small samples, other methods have approximately nominal or higher coverage  
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Table 4.31 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Categorical, 10% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 -0.003 -0.003 0.000 1.189 0.182 0.089 1.000 1.000 1.000 0.000 0.000 0.000 0.070 0.001 0.000 
CC .14 0.278 0.073 0.006 1.527 0.400 0.260 0.989 0.943 0.916 0.000 0.025 0.093 0.154 0.011 0.005 
CC .39 0.318 0.051 0.003 3.375 1.120 0.761 0.955 0.943 0.949 0.011 0.663 0.945 0.954 0.091 0.036 
CC .59 0.297 0.042 0.017 5.387 1.883 1.286 0.943 0.954 0.945 0.065 0.940 1.000 2.478 0.244 0.107 

                 
Mean .00 -0.008 -0.004 -0.001 1.038 0.199 0.116 1.000 1.000 1.000 0.000 0.000 0.000 0.060 0.002 0.001 
Mean .14 -0.040 -0.138 -0.164 1.304 0.365 0.239 0.985 0.858 0.770 0.000 0.032 0.182 0.111 0.013 0.008 
Mean .39 -0.058 -0.236 -0.301 2.676 0.912 0.613 0.902 0.755 0.575 0.014 0.506 0.679 0.588 0.114 0.094 
Mean .59 -0.141 -0.333 -0.367 3.990 1.412 0.958 0.846 0.597 0.382 0.064 0.733 0.956 1.463 0.436 0.388 

                 
MBE .00 -0.001 -0.001 0.000 0.797 0.097 0.046 0.998 0.997 0.997 0.002 0.003 0.003 0.008 0.000 0.000 
MBE .14 -0.626 -0.660 -0.681 0.949 0.162 0.096 0.969 0.758 0.544 0.005 0.129 0.299 0.019 0.004 0.003 
MBE .39 -0.609 -0.677 -0.689 1.664 0.388 0.253 0.844 0.105 0.002 0.096 0.727 0.944 0.233 0.179 0.180 
MBE .59 -0.646 -0.698 -0.703 2.737 0.607 0.401 0.681 0.007 0.000 0.201 0.913 0.996 1.004 0.965 0.967 

                 
DA .00 -0.004 -0.002 0.000 1.133 0.179 0.088 1.000 1.000 1.000 0.000 0.000 0.000 0.044 0.001 0.000 
DA .14 0.038 -0.083 -0.137 1.420 0.373 0.242 1.000 0.951 0.918 0.000 0.009 0.063 0.093 0.008 0.004 
DA .39 0.041 -0.125 -0.165 3.009 1.017 0.689 0.954 0.913 0.896 0.001 0.562 0.922 0.506 0.067 0.035 
DA .59 0.001 -0.158 -0.171 4.716 1.677 1.150 0.931 0.897 0.853 0.013 0.896 0.998 1.277 0.199 0.128 

                 
MICE .00 -0.004 -0.002 0.000 1.158 0.183 0.090 1.000 1.000 1.000 0.000 0.000 0.000 0.048 0.001 0.000 
MICE .14 0.080 -0.057 -0.111 1.445 0.378 0.246 1.000 0.951 0.919 0.000 0.015 0.055 0.097 0.009 0.004 
MICE .39 0.083 -0.090 -0.132 3.066 1.041 0.703 0.962 0.923 0.909 0.001 0.586 0.922 0.570 0.069 0.034 
MICE .59 0.050 -0.115 -0.131 4.819 1.726 1.177 0.933 0.927 0.890 0.019 0.905 0.997 1.439 0.196 0.111 

                 
FCS-BB-PI .00 -0.003 -0.002 0.000 1.574 0.311 0.190 0.999 1.000 1.000 0.001 0.000 0.000 0.033 0.001 0.000 
FCS-BB-PI .14 -0.040 -0.051 -0.049 1.847 0.498 0.361 0.995 0.992 0.984 0.006 0.027 0.035 0.078 0.007 0.003 
FCS-BB-PI .39 -0.061 -0.065 -0.072 3.416 1.219 0.943 0.955 0.968 0.985 0.129 0.618 0.850 0.559 0.068 0.033 
FCS-BB-PI .59 -0.081 -0.074 -0.081 5.159 1.988 1.560 0.931 0.970 0.978 0.363 0.914 0.995 1.511 0.192 0.109 

                 
FCS-BB-JAV .00 -0.002 -0.002 0.000 1.976 0.359 0.217 0.998 1.000 1.000 0.002 0.000 0.000 0.055 0.001 0.000 
FCS-BB-JAV .14 -0.051 -0.047 -0.039 2.307 0.581 0.415 0.994 0.994 0.991 0.008 0.028 0.035 0.125 0.009 0.004 
FCS-BB-JAV .39 0.054 0.047 -0.013 4.422 1.444 1.108 0.954 0.983 0.996 0.140 0.620 0.846 1.023 0.090 0.035 
FCS-BB-JAV .59 0.064 0.055 0.023 6.837 2.417 1.876 0.935 0.982 0.995 0.364 0.917 0.996 2.812 0.255 0.110 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 
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Table 4.32 
Moderated Mediation Model Metrics – Mediator Categorical, Endogenous Categorical, 20% Missingness Per Variable 
  Empirical Bias Confidence Interval Length Coverage Probability Rejection Rate Mean Squared Error 

Method Effect 100  500 1000 100  500 1000 100  500 1000 100  500 1000 100  500 1000 
                 

CC .00 -0.012 -0.001 -0.001 1.413 0.222 0.110 1.000 1.000 1.000 0.000 0.000 0.000 0.088 0.002 0.000 
CC .14 0.249 0.113 0.015 1.913 0.445 0.286 0.995 0.957 0.917 0.000 0.016 0.078 0.249 0.014 0.006 
CC .39 0.385 0.033 0.021 3.767 1.221 0.832 0.951 0.953 0.945 0.007 0.539 0.906 1.350 0.095 0.049 
CC .59 0.336 0.041 0.014 6.201 2.048 1.398 0.942 0.944 0.950 0.028 0.892 0.997 3.913 0.271 0.127 

                 
Mean .00 -0.011 -0.005 0.000 1.177 0.276 0.178 1.000 1.000 0.995 0.000 0.000 0.005 0.068 0.005 0.002 
Mean .14 -0.195 -0.211 -0.284 1.473 0.398 0.266 0.987 0.770 0.559 0.000 0.064 0.247 0.162 0.023 0.017 
Mean .39 -0.175 -0.446 -0.487 2.547 0.841 0.570 0.837 0.517 0.380 0.007 0.379 0.418 0.632 0.201 0.196 
Mean .59 -0.322 -0.489 -0.573 3.676 1.281 0.833 0.750 0.398 0.229 0.038 0.487 0.601 1.520 0.784 0.850 

                 
MBE .00 -0.006 -0.001 0.000 0.996 0.116 0.054 0.997 0.996 0.998 0.003 0.004 0.002 0.010 0.000 0.000 
MBE .14 -0.649 -0.653 -0.675 1.217 0.182 0.106 0.976 0.776 0.567 0.008 0.103 0.255 0.027 0.004 0.003 
MBE .39 -0.606 -0.682 -0.686 1.987 0.426 0.276 0.865 0.139 0.008 0.062 0.625 0.899 0.243 0.182 0.179 
MBE .59 -0.635 -0.695 -0.701 2.959 0.660 0.439 0.771 0.009 0.000 0.129 0.883 0.992 1.048 0.962 0.965 

                 
DA .00 -0.003 -0.001 0.000 1.283 0.206 0.104 1.000 1.000 1.000 0.000 0.000 0.000 0.041 0.001 0.000 
DA .14 -0.089 -0.205 -0.273 1.616 0.379 0.244 1.000 0.955 0.907 0.000 0.004 0.026 0.102 0.007 0.004 
DA .39 -0.112 -0.292 -0.291 3.012 0.987 0.674 0.949 0.859 0.785 0.000 0.323 0.798 0.408 0.074 0.053 
DA .59 -0.204 -0.321 -0.336 4.595 1.590 1.083 0.916 0.778 0.586 0.000 0.746 0.992 1.027 0.307 0.268 

                 
MICE .00 -0.003 0.000 0.000 1.337 0.214 0.107 1.000 1.000 1.000 0.000 0.000 0.000 0.048 0.001 0.000 
MICE .14 -0.027 -0.148 -0.219 1.673 0.395 0.253 1.000 0.958 0.913 0.000 0.005 0.034 0.119 0.008 0.004 
MICE .39 -0.009 -0.229 -0.228 3.186 1.035 0.705 0.947 0.896 0.842 0.000 0.382 0.828 0.498 0.071 0.045 
MICE .59 -0.113 -0.249 -0.264 4.899 1.691 1.153 0.927 0.836 0.747 0.002 0.786 0.990 1.205 0.256 0.197 

                 
FCS-BB-PI .00 -0.003 0.000 0.000 1.495 0.305 0.189 0.998 1.000 1.000 0.002 0.000 0.000 0.028 0.001 0.000 
FCS-BB-PI .14 -0.160 -0.151 -0.145 1.778 0.468 0.338 0.991 0.995 0.982 0.009 0.025 0.038 0.081 0.006 0.004 
FCS-BB-PI .39 -0.092 -0.085 -0.084 3.021 1.091 0.854 0.943 0.950 0.966 0.115 0.548 0.813 0.422 0.069 0.046 
FCS-BB-PI .59 -0.132 -0.125 -0.124 4.467 1.732 1.366 0.928 0.906 0.902 0.283 0.908 0.991 1.102 0.246 0.199 

                 
FCS-BB-JAV .00 -0.012 -0.001 0.000 2.341 0.414 0.252 0.999 1.000 1.000 0.001 0.000 0.000 0.066 0.001 0.000 
FCS-BB-JAV .14 0.024 -0.039 -0.099 2.804 0.640 0.455 0.992 0.995 0.991 0.010 0.023 0.031 0.195 0.011 0.005 
FCS-BB-JAV .39 0.047 0.036 0.015 5.029 1.557 1.190 0.963 0.988 0.992 0.120 0.545 0.794 1.420 0.094 0.046 
FCS-BB-JAV .59 0.067 0.055 0.021 7.745 2.559 1.988 0.934 0.982 0.994 0.279 0.887 0.991 3.598 0.262 0.124 

                 
Note. CC = complete case analysis; Mean = mean imputation; MBE = model-based estimation; DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping and just 
another variable imputation. 

  



www.manaraa.com

190 

 

 

probabilities. In medium and large samples, both mean imputation and MBE have 

considerably low coverage as effect sizes increases; among DA, MICE, and CC, CC generally 

has the highest coverage probabilities, whereas, DA has the lowest coverage probabilities.   

All methods have lower than nominal Type I Error rates. In small samples, MBE and 

FCS methods have highest power across all conditions, with higher power for FCS methods 

at larger effect sizes. In medium sample sizes, MBE has the highest power; CC and FCS 

methods have higher power for larger effect sizes than other methods. In large samples, 

both MBE and mean imputation have higher power than other methods at small effects; 

however, as effect sizes increase, mean imputation has considerably lower power than 

other methods. Among other methods, with 10% missingness, CC has slightly higher 

power, whereas, FCS methods have slightly lower power; with 20% missingness, CC has 

higher power, whereas, DA, MICE, and FCS methods perform similarly. In terms of MSEs, 

estimates are highest for FCS-BB-JAV and CC in small samples, whereas, highest for MBE in 

medium and large sized samples. Mean imputation also has larger MSEs compared to other 

methods, especially with more missingness and larger effect sizes; other methods perform 

comparable. With regards to MI methods, the FCS-BB-JAV method accurately estimates the 

fraction of missing information; other methods tend to overestimate the FMI at larger effect 

sizes (see Table 4.33). Supplemental figures for the results are presented in Appendix D. 
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Table 4.33 
Moderated Mediation Model FMI Metric – Mediator Categorical, Endogenous Categorical 
  FMI – 10% Missingness  FMI – 20% Missingness  

Method Effect 100  500 1000 100  500 1000 
        

DA .00 0.099 0.092 0.092 0.171 0.165 0.168 
DA .14 0.109 0.110 0.110 0.191 0.194 0.204 
DA .39 0.137 0.128 0.131 0.225 0.231 0.230 
DA .59 0.155 0.152 0.151 0.248 0.251 0.250 

        
MICE .00 0.099 0.095 0.093 0.173 0.173 0.174 
MICE .14 0.109 0.111 0.115 0.189 0.203 0.214 
MICE .39 0.131 0.131 0.128 0.227 0.238 0.233 
MICE .59 0.148 0.148 0.141 0.246 0.255 0.256 

        
FCS-BB-PI .00 0.131 0.105 0.099 0.221 0.190 0.184 
FCS-BB-PI .14 0.131 0.107 0.111 0.236 0.203 0.203 
FCS-BB-PI .39 0.148 0.133 0.130 0.250 0.231 0.225 
FCS-BB-PI .59 0.163 0.145 0.140 0.268 0.243 0.247 

        
FCS-BB-JAV .00 0.110 0.093 0.087 0.208 0.181 0.176 
FCS-BB-JAV .14 0.112 0.096 0.092 0.211 0.181 0.180 
FCS-BB-JAV .39 0.116 0.097 0.092 0.217 0.187 0.184 
FCS-BB-JAV .59 0.121 0.101 0.094 0.220 0.190 0.183 

        
Note. DA = data augmentation; MICE = multiple imputation by chained equations; FCS-
BB-PI = fully conditional specification using Bayesian bootstrapping and passive 
imputation; FCS-BB-JAV = fully conditional specification using Bayesian bootstrapping 
and just another variable imputation. 
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CHAPTER 5 

DISCUSSION 

 

5.1. Study 1 

 The purpose of this study was to examine empirical performance of Bayesian 

bootstrapping (BB) in estimating and testing indirect-type effects that occur in mediation 

and moderated mediation models. Monte Carlo (MC) simulations were conducted to 

determine the relative performance of BB to commonly used methods in the literature such 

as the delta methods (first- and second-order) and the bias-corrected (BC) bootstrap. Four 

different mediator/endogenous variable combinations (i.e., continuous/continuous, 

continuous/categorical, categorical/continuous, categorical/categorical) were examined 

for both mediation and moderated mediation models. Methods were compared based on 

empirical biases, confidence interval lengths, coverage probabilities, rejection rates (e.g., 

Type I Error, power), and mean squared errors.  

Results from our studied conditions highlight several important points about using 

BB for testing indirect-type effects. Most importantly, the indirect effect estimator (e.g., 

mean or median) has a significant influence on the empirical bias of the indirect effect 

estimate. Specifically, for continuous mediators and endogenous variables, the mean 

estimator tended to have lower bias than the median estimator in both mediation and 

moderated mediation models. For mediation models with at least one categorical response 

variable (i.e., mediator and/or endogenous variable), in general the median estimator had 

lower bias in small sample sizes for non-null effects and in larger samples (i.e., 𝑛 = 500 and 

1,000) with larger effects (i.e., effects = .39 and .59), whereas the mean estimator had 
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lower bias in larger samples with small effects. Although similar effects were found in 

moderated mediation models, two interesting differences appeared in which the median 

estimator had lowest bias: (1) for continuous mediators and categorical endogenous 

variables, the median estimator had lower bias than the mean estimator across all non-null 

effects, and (2) for categorical mediators and endogenous variables, the median estimator 

had lower bias than the mean estimator in medium sample sizes with small effects.  

In terms of empirical biases, the differences in performance of the mean and median 

estimators may be attributable to a combination of two factors. First, these differences in 

bias performance highlight the fact that the posterior distribution of the indirect effect is 

skewed, especially when one or more response variables are categorical. For skewed 

posterior distributions, researchers have found that different Bayesian estimators 

combined with different prior distributions can impact empirical performance (e.g., Bayes 

& Branco, 2007; Browne & Draper, 2006). Although no previous research to our knowledge 

has systematically compared different posterior estimators of the unconditional indirect 

effect from Bayesian mediation models, Wang and Preacher (2015) found that for 

continuous response variables, the mean estimator yielded more accurate results than a 

median estimator for conditional indirect effects from Bayesian moderated mediation 

models. Results from the current study echo findings from the Wang and Preacher (2015) 

study for Bayesian moderated mediation models. When at least one response variable is 

categorical, however, our results indicate that BB estimator should be selected based on 

sample size and (expected) effect size.  

With regards to the choice of prior distribution for BB, we used the improper prior 

specified in Rubin (1981). However, as Hastie et al. (2009) note, this choice of improper 
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(and non-informative) prior distribution can be viewed as a “poor man’s Bayesian model”. 

In essence, this choice of prior distribution has an effect of smoothing the bootstrap 

distribution. Future research should investigate other prior distributions to determine the 

effect of prior distribution on the empirical performance of the BB for indirect effects 

analysis. 

Second, the differences in bias of the Bayesian estimators may be influenced by the 

two-stage BB sampling scheme. Specifically, we used the same number of samples (i.e., 

1,000) for stage one (number of bootstrap samples) and stage two (sample size draws) 

sampling. As such, this sampling scheme corresponds to drawing samples at stage two that 

are 10 times, two times, and equal to the sample sizes of small (𝑛 = 100), medium (𝑛 =

500), and large (𝑛 = 1,000) samples, respectively, examined in the present study. Based on 

the current results, it appears that the sampling scheme is reasonable for testing indirect-

type effects in larger sample sizes with larger effects, but for smaller samples and effect 

sizes, more samples may need to be drawn to see if empirical bias decreases for the BB.  

Relative to frequentist methods (i.e., delta methods and BC bootstrap), for 

continuous response variables the BB with mean estimator had comparable bias across all 

conditions. On the contrary, when at least one response variable was categorical, the 

results are more complicated. Generally, the BB (depending on the estimator) tended to 

have comparable or slightly higher biases than the frequentist methods, except for in small 

samples with small effects where the BB methods tended to have comparable or slightly 

lower biases (especially with conditional indirect effects). Given that the BC bootstrap is 

considered a gold standard method for indirect effect analysis, these results show promise 

for the use of the BB in certain conditions. Despite these somewhat mixed results for 
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empirical biases, the current findings highlight an important finding for indirect effect 

analysis in small sample sizes. That is, regardless of the method, indirect effect (both 

unconditional and conditional) estimates are often biased. This bias, however, disappears 

as sample size increases, across all effect sizes, and corroborates the need for larger sample 

sizes for indirect effects analysis.  

In terms of confidence interval lengths, with continuous responses in both 

mediation and moderated mediation models the BB had comparable performance to the 

delta methods and BC bootstrap in small samples but slightly wider intervals in larger 

sample sizes. Across conditions with at least one categorical response, the BC bootstrap 

tended to have slightly wider intervals in small samples relative other methods, whereas, 

the BB methods had slightly wider intervals than the delta methods; in larger samples, the 

BB methods tended to have slightly wider intervals than both BC bootstrap and delta 

methods. Relative to other methods, the BB methods generally had wider intervals at larger 

effect sizes. Although previous research has shown that the BB often leads to similar and 

sometimes narrower confidence intervals than nonparametric bootstrap methods (Taddy 

et al., 2015), our results only partial support this finding. Specifically, we found comparable 

performance between the BB and nonparametric bootstrap at smaller effect sizes, however, 

at larger effect sizes, results varied depending on the response variable type (i.e., 

continuous or categorical).  

Coverage probabilities for the BB methods tended to be higher than compared to 

other methods, which may reflect the consequence of BB methods yielding wider 

confidence intervals. In fact, aside from one condition (i.e., large effects in small samples 

with moderated mediation models and continuous mediator and categorical endogenous 
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variables), BB methods were the only methods that had approximately nominal (e.g., ≥

.93) coverage probabilities or higher across all examined conditions. Moreover, in the 

condition where coverage rates dropped below nominal levels, the BB methods still had 

slightly higher coverage than the BC bootstrap. Overall, these findings demonstrate that BB 

methods yielded higher coverage rates than frequentist methods and support prior 

simulation results for Bayesian mediation analysis (Yang & MacKinnon, 2009). For 

moderated mediation results, however, prior research has demonstrated comparable 

coverage performance of Bayesian methods to bootstrapping methods, whereas, our 

results demonstrated consistently higher coverage for BB methods. As Yang and 

MacKinnon (2009) suggest, simulations conducted in a frequentist setting tend to favor 

frequentist approaches to estimation. If the data were generated from a Bayesian model, 

the coverage of the credible intervals would more closely match nominal coverage levels.  

For null effect sizes, the BB and other methods produced Type I Error rates that 

were well below nominal coverage rates (i.e., .05). These results are consistent with 

findings using Bayesian methods with non-informative priors and frequentist methods 

(Preacher et al., 2007; Yuan & MacKinnon, 2009; Wang & Preacher, 2015) for indirect 

effects analysis. With regards to non-null effects, however, power levels changed as a 

function of sample size and effect size. Specifically, in small samples with smaller effects, 

the bootstrap methods yielded higher power than the delta methods, with the highest 

power among the BC bootstrap. Given that the delta methods are based on asymptotic 

variances, these findings are not surprising and support previous research (Preacher et al., 

2007; Yuan & MacKinnon, 2009; Wang & Preacher, 2015). In addition, the findings that the 
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power of Bayesian methods is slightly lower than BC bootstrap in small samples for some 

conditions supports results in Wang and Preacher (2015).  

For larger sample sizes, the BC bootstrap had higher power for smaller effect sizes, 

whereas, the BB methods performed similar to delta methods in medium sample sizes; in 

large samples with small effects, surprisingly the BB methods consistently had lower 

power than other methods. These findings are somewhat inconsistent with previous 

research, which has demonstrated that in larger sample sizes the Bayesian methods tend to 

outperform frequentist methods (Yuan & MacKinnon, 2009; Wang & Preacher, 2015). One 

explanation for the better performance of the BB methods in smaller samples may be due 

to the resampling scheme described earlier. If a larger number of samples are drawn at 

stage two, the Power of the BB methods may become more consistent with the BC 

bootstrap at larger sample sizes.  

Across most conditions, MSEs for the BB methods were relatively similar to other 

methods. As can be expected, because MSE is a function of bias and variance of an 

estimator, the largest differences in MSEs were observed in conditions that had 

demonstrated highest variability in bias across methods. In particular, when at least one 

response variable was categorical, the BB methods yielded highest MSEs in larger samples. 

Among the BB methods, however, the estimator with the lowest bias yielded smallest MSE. 

The conditions in which MSEs were similar supports previous research (Yuan & 

MacKinnon, 2009; Wang & Preacher, 2015). One explanation for the differences in MSEs in 

other conditions may be due to simulation error of BB methods. In practical applications, 

bootstrap testing of indirect effects is often implemented with significantly more samples 

(i.e., bootstrap samples >> 1,000) than investigated in the current study. As such, if larger 
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bootstrap samples are drawn, the variability in estimates may diminish (thus reducing 

simulation error and in turn bias and MSE).  

5.2. Study 2 

Study 1 demonstrated that the BB method for indirect effects analysis has 

comparable performance to other popular methods such as the delta and BC bootstrap 

methods. As such, the purpose of this study was to examine the performance of the BB in a 

missing data context for indirect effects analysis. Specifically, we examined the empirical 

performance of a novel MI imputation algorithm (FCS-BB) that uses BB to simulate an 

indirect effect’s posterior distribution and a unified imputation framework based on 

gradient boosting that can model both linear and nonlinear effects. Monte Carlo (MC) 

simulations were conducted to determine the relative performance of the FCS-BB to 

several commonly used methods in the literature such as complete case analysis (CC), 

mean imputation, the model-based estimation with BC bootstrapping (MBE), data 

augmentation (CA), and multiple imputation by chained equations (MICE). Four different 

mediator/endogenous variable combinations (i.e., continuous/continuous, 

continuous/categorical, categorical/continuous, categorical/categorical) were examined 

for both mediation and moderated mediation models. Methods were compared based on 

empirical biases, confidence interval lengths, coverage probabilities, rejection rates (e.g., 

Type I Error, power), mean squared errors (MSEs), and fraction of missing information 

(FMI) in samples with 10% and 20% on select variables (i.e., all variables in mediation 

models, only response variables in moderated mediation models).  

Several important points can be made about using FCS-BB for indirect effects 

analysis based on the results from our MC simulations. Most importantly, in the case of MI 
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using linear boosters, prediction error and/or parameter uncertainty must be incorporated 

into the imputation scheme. For linear boosters with continuous response variables, we 

incorporated prediction error by adding a normally distributed random error to predicted 

values based on the residual variance of the observed data. This method uses a similar 

technique to incorporate prediction error as stochastic regression imputation (Little & 

Rubin, 2002). On the contrary, for linear boosters for categorical response variables, 

originally we did not incorporate prediction error or parameter uncertainty into the 

imputations, which resulted in poor performance across all conditions examined. However, 

once we modified the gradient boosting imputation scheme to incorporate parameter 

uncertainty using techniques similar to Bayesian logistic regression, we found that our 

results improved substantially across all conditions.   

In models with continuous response variables, although MBE had the best overall 

performance, FCS methods (i.e., FCS-BB and FCS-BB-JAV) had comparable performance 

across all metrics except confidence interval length and power; MBE had narrower 

confidence intervals and higher power in smaller sample sizes with smaller effect sizes. 

These findings echo previous results found in Enders et al. (2013) for Bayesian missing 

data models versus frequentist models based on nonparameteric bootstrapping. In 

addition, our findings support previous research demonstrating similar empirical 

performance for DA and MICE in the case of imputing continuous response variables 

(Karangwa, 2013; Kropko et al., 2014; Raghunathan et al., 2001). 

Furthermore, FCS methods generally performed better (especially in moderated 

mediation models) than other MI methods (i.e., DA and MICE) and CC in terms of coverage 

probabilities and power (in smaller samples), but had wider confidence intervals. It is 
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important to note that in the case of continuous response variables and linear boosters, 

FCS-BB bears close resemblance to MICE and DA in terms of imputation models. More 

specifically, all three methods implement a type of iterative stochastic linear regression 

model to impute missing values. As such, these findings highlight the added benefit of 

including resampling strategies for MI schemes, which have been demonstrated previously 

(van Buuren, 2012).  

For conditions in which at least one response variable was categorical, MI methods 

(i.e., DA, MICE, FCS-BB*) tended to outperform non-MI methods in mediation models, 

whereas in moderated mediation models, FCS-BB-JAV and CC analysis performed better 

than other methods (including DA and MICE). Surprisingly, although MBE tended to have 

highest power, it was generally the most biased method and had the worst confidence 

interval coverage, demonstrating higher bias and worse coverage probabilities than mean 

imputation in most conditions. It is important to note that the underlying estimation 

algorithm for MBE changes when at least one categorical response variable is present. That 

is, as opposed to using a full information maximum likelihood approach to estimate 

parameters in the presence of missing data with all continuous response variables, a 

limited information weighted least squares approach is used instead. Although the latter 

estimation algorithm is supposed to produce consistent estimates when data are MAR 

(Asparouhov & Muthén, 2010), the findings from of our study do not provide empirical 

support.  

Among the results of MI methods for mediation models with at least one categorical 

response variable, FCS-BB* tended to have the least biased estimates, highest coverage 

probabilities, highest power in small samples, but also widest confidence intervals and 
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slightly higher MSEs. With regards to other MI methods, MICE tended to outperform DA 

across all conditions, especially in terms of empirical bias. These findings are not 

surprisingly given the implementations of DA and MICE in the current study. Specifically, 

our implementation of DA to impute categorical variables relied on thresholding imputed 

categorical values, whereas, our implementation of MICE used a Bayesian logistic 

regression model to impute categorical variables. The latter model is specifically designed 

to handle categorical response variables, whereas, the former model is specifically 

designed to handle normally distributed continuous response variables. Although previous 

research (Finch, 2010; Kropko et al., 2014; Lee & Carlin, 2010) has been inconclusive in 

determining whether DA or MICE has better empirical performance with categorical (i.e., 

binary) response variables, our results provide empirical support for using MICE as 

opposed to DA in such cases.  

Among findings of MI methods for moderated mediation models with at least one 

categorical response variable, FCS-BB-JAV resulted in the best performance across almost 

all metrics. Specifically, FCS-BB-JAV tended to have the least biased estimates, highest 

coverage probabilities, highest power, but widest confidence intervals. On the contrary, 

across some conditions in small samples, FCS-BB-JAV had the highest MSEs. Given that the 

bias estimates were relatively low and MSE is a function of bias and variance, it appears 

that the high MSEs are primarily a function of the variance of the imputation estimates. 

Inherently, tree models yield low bias, but high variance estimates (Hastie et al., 2009). 

Despite the fact that boosting is a method that was designed to reduce the variance of tree 

models, it appears that in small samples with mixed variable types and interaction effects, 

tree-based models tend to yield highly variable estimates in missing data contexts. Put 



www.manaraa.com

202 

 

 

another way, compared to other conditions examined, in these conditions there appears to 

be a higher bias/variance trade-off for using tree boosted imputation models.  

Interestingly, CC analysis outperformed both DA and MICE across most conditions. 

Neither DA nor MICE are designed to explicitly impute interactive effects (both use PI), 

therefore, this finding underscores the negative effects that misspecified imputation 

models can have on regression coefficients. Comparing the FCS-BB methods, estimates 

from JAV were less biased and had higher coverage probabilities than PI. Therefore, the 

poorer performance among PI methods (i.e., DA, MICE, and FCS-BB-PI) relative to JAV 

highlights the importance of using imputation models that explicitly incorporate the same 

effects present in underlying substantive models. In other words, our findings support 

Allison’s (2003) suggestion that when interactions are present in a model with missing 

data, these effects should also be included into an imputation model.  

In addition, these findings support previous claims by von Hippel (2009) that JAV is 

superior to PI in both linear and logistic (or equivalently probit) regression models. Prior 

work by Seaman et al. (2012) demonstrated that both JAV and PI resulted in substantial 

bias for imputing quadratic covariates with MCAR and MAR missingness mechanisms; 

however, our results demonstrated that when combined with tree-based imputation 

models for categorical variables, the JAV approach led to confidence proper imputations 

across most conditions. In terms of our imputation methodology, combining MI with 

bootstrapping has previously demonstrated good performance for indirect effects analysis 

in mediation models with continuous variables (Wang & Wang, 2014). Collectively, our 

results extend these findings and provide empirical support for combining MI with 

Bayesian bootstrapping for indirect effects analysis in both mediation and moderated 
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mediation analysis and with both continuous and categorical response variables. However, 

our results also underscore the importance of selecting an appropriate imputation model 

that contains the similar effects as the underlying substantive model.  

5.3. Study Strengths 

 There are several noteworthy strengths of the present study. First, this is the first 

comprehensive simulation study to our knowledge that systematically compared different 

estimation methods and missing data methods in mediation and moderated mediation 

models with both continuous and categorical variables. Second, we demonstrated the 

potential benefits of using BB for Bayesian inference in indirect effects analysis. 

Specifically, BB can be used to generate posterior inferences of indirect effects without 

having to specify a fully Bayesian model (Rubin, 1981). Lastly, we introduced a unified MI 

framework based on gradient boosted models for imputing linear and nonlinear effects and 

demonstrated the empirical performance of this framework across different conditions. A 

strength of gradient boosted models is that these models can be applied to continuous, 

categorical (binary, ordered categorical, unordered categorical), count, and censored data 

by using the same fundamental algorithm but changing the loss function to be optimized 

(Friedman, 2001).  

5.4. Study Limitations and Future Research 

As with any research, our study is not without limitations. Even though we 

examined many conditions in our simulation studies, we did not examine different 

combinations of effect sizes (e.g., small/large, null/large, etc.) as done in other studies 

(Enders et al., 2014, Koopman et al., 2015). In examining different combinations of effect 

sizes, we would obtain more accurate empirical estimates, especially empirical Type I Error 
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rates, that may reflect metrics which generalize better to practical settings. In addition, we 

did not examine multiple moderator values for conditional indirect effects. It is likely that 

empirical estimates of conditional indirect effects, such as the ones examined in this study, 

would change as a function of different moderator values. We also did not compare the 

potential effects of varying the sampling scheme (e.g., vary stage 1 and/or stage 2 samples) 

for Bayesian bootstrapping. Furthermore, because our results are based on using linear 

models, these cannot be generalized to settings in which underlying linear model 

assumptions are violated (e.g., multilevel data with correlated errors).  

In addition to addressing the issues above for future research, there are several 

other important research avenues to explore as well. First, with the recent popularity of 

Bayesian methods for indirect effects analysis, a comprehensive comparison of the 

Bayesian bootstrap with a fully Bayesian model for indirect effects analysis would provide 

further insight into the relative performance of these Bayesian methods. Second, although 

increasing the number of bootstrap samples (at stage 1 and stage 2) may alleviate the 

issue, future research should attempt to identify the underlying differences in posterior 

estimators for indirect effects that we found in Study 1 using Bayesian bootstrapping. 

Third, an interesting avenue for future research would be to examine the performance of 

using gradient boosted imputation schemes to impute non-normal data, count data, and 

multi-categorical data. Lastly, MI schemes using gradient boosted imputers should attempt 

to incorporate and optimize automatic hyperparameter tuning into the imputation pipeline 

using methods such as cross-validation with grid research.  
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5.5. Conclusion 

 In summary, our findings demonstrate that BB is a useful resampling technique that 

can be used to generate posterior inferences for indirect effects analysis. With the 

appropriate posterior estimator, the BB yields comparable performance to different delta 

method approximations (i.e., first- and second-order) and the BC bootstrap across different 

models and combinations of variable types. Moreover, these initial findings suggest that the 

BB demonstrates similar empirical performance to fully Bayesian models for indirect 

effects analysis, but without the need to explicitly specify prior distributions for all model 

parameters. In practice, these latter findings imply that the BB can used by researchers in 

situations where Bayesian inference is the goal, but fully Bayesian models are complicated 

(e.g., with categorical response variables). For example, in research involving rare events, 

such as substance abuse or domestic violence, the response variables of interest may be 

binary (e.g., meets clinical diagnosis for drug abuse/does not meet clinical diagnosis for 

drug abuse, perpetrated violence in last year/did not perpetrate violence in last year). In 

these applications, the BB can be used to generate posterior inferences for the indirect 

effect(s) of interest.  

With missing data, our MI algorithm that uses BB and gradient boosted imputation 

models tends to perform as well as or better than commonly used missing data techniques 

for indirect effects analysis. In particular, our MI algorithm demonstrates properties of 

confidence proper imputation procedures (Rubin, 1996), that is, estimates which are 

relatively unbiased and obtain approximately nominal coverage probabilities. 

Furthermore, our findings demonstrate the benefits of the JAV method for handling 

interactions with missing data and corroborate the need for imputation models to at least 
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contain the same linear and nonlinear effects that are present in underlying substantive 

models.  
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APPENDIX A 

PROOFS 

 

Proof of Proposition 1.1. 

To find the first two moments of 𝑈, we recall from elementary calculus the identity 

given by the derivative of a univariate logarithmic function, 

 𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)) =

1

𝑓(𝑦|θ,ϕ)

𝜕

𝜕θ
𝑓(𝑦|θ, ϕ), (A.1) 

where log denotes the natural logarithm, or base 𝑒. Taking the expectations of both sides of 

(A.1), 𝐸(𝑈) is expressed as 

 
𝐸(𝑈) = ∫

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ, ϕ)𝑑𝑦 

= ∫
𝜕

𝜕θ
𝑓(𝑦|θ, ϕ) 𝑑𝑦. 

(A.2) 

Assuming certain regularity conditions hold (see Casella & Berger, 2001 p. 516), the 

integral on the right-hand side of (A.2) can be calculated first 

 
∫

𝜕

𝜕θ
𝑓(𝑦|θ, ϕ) 𝑑𝑦 =

𝜕

𝜕θ
∫𝑓(𝑦|θ,ϕ) 𝑑𝑦
⏟          
Proper density 

 

=
𝜕

𝜕θ
(1) 

= 0. 

 

Therefore, 𝐸(𝑈) = 0. The variance of 𝑈, also called the information, can be calculated using 

the general variance equation 

 𝑉𝑎𝑟(𝑈) = 𝐸(𝑈2) − [𝐸(𝑈)]2. (A.3) 
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Since, 𝐸(𝑈) = 0, [𝐸(𝑈)]2 = 0 (again assuming regularity conditions hold). To calculate 

𝐸(𝑈2), we differentiate both sides of (A.2)  

 𝜕

𝜕θ
𝐸(𝑈) =

𝜕

𝜕θ
[∫

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ, ϕ)𝑑𝑦] 

=
𝜕

𝜕θ
[∫

𝜕

𝜕θ
𝑓(𝑦|θ, ϕ) 𝑑𝑦]. 

(A.4) 

Regularity conditions allow the order of differentiation and integration to be interchanged, 

so the right-hand size of (A.4) becomes 

 
∫

𝜕

𝜕θ
[
𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ, ϕ)] 𝑑𝑦

=∫{
𝜕2

𝜕θ2
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ, ϕ)

+
𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ))

𝜕

𝜕θ
𝑓(𝑦|θ, ϕ)} 𝑑𝑦. 

(A.5) 

 

Using the identity 

 𝜕

𝜕θ
𝑓(𝑦|θ, ϕ) = 𝑓(𝑦|θ, ϕ)

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)),  

The second term of the right-hand side of (A.5) simplifies to 

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ, ϕ)

𝜕

𝜕θ
log(𝑓(𝑦|θ,ϕ)) = (

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)))

2

𝑓(𝑦|θ, ϕ). 

Hence, (A.5) becomes 

 
∫

𝜕2

𝜕θ2
log(𝑓(𝑦|θ, ϕ)) 𝑓(𝑦|θ,ϕ) 𝑑𝑦

+ ∫(
𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)))

2

𝑓(𝑦|θ, ϕ) 𝑑𝑦 = 0, 

(A.6) 

or to simplify notation, 
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𝐸 [

𝜕2

𝜕θ2
log(𝑓(𝑦|θ, ϕ))] + 𝐸 [(

𝜕

𝜕θ
log(𝑓(𝑦|θ, ϕ)))

2

] = 0 (A.7) 

Rewriting (A.6) or (A.7) in terms of the score function, 

 𝐸(𝑈′) + 𝐸(𝑈2) = 0  

where 𝑈′ denotes the partial derivative of 𝑈 with respect to θ. From (A.3), we see that 

 𝑉𝑎𝑟(𝑈) = 𝐸(𝑈2) − [𝐸(𝑈)]2 

= 𝐸(𝑈2) 
 

or equivalently 

  𝑉𝑎𝑟(𝑈) = −𝐸(𝑈′),  

which completes the proof. ∎ 

 

Proof of Lemma 2.1. 

 Recall, 𝚺 is defined as 

 𝚺 = [
𝚺11 𝚺12
𝚺21 𝚺22

]. (A.8) 

To prove this Lemma with respect to the determinant of 𝚺, multiply the second matrix 

column of 𝚺 by 𝚺22
−1𝚺21 and subtract this result from the first matrix column, 

|[
𝚺11 − 𝚺12𝚺22

−1𝚺21 𝚺12
𝟎 𝚺22

]| = |𝚺22||𝚺11 − 𝚺12𝚺22
−1𝚺21|. 

The result is similar for the other determinant. With regards to the inverse of 𝚺, given that 

𝚺−1 is the inverse of 𝚺, 𝚺𝚺−1 (or equivalently 𝚺−1𝚺) is a partitioned identity matrix, 

𝚺𝚺−1 = [
𝚺11 𝚺12
𝚺21 𝚺22

] [𝚺
11 𝚺12

𝚺21 𝚺22
] 

= [
𝚺11𝚺

11 + 𝚺12𝚺
21 𝚺11𝚺

12 + 𝚺12𝚺
22

𝚺21𝚺
11 + 𝚺22𝚺

21 𝚺21𝚺
12 + 𝚺22𝚺

22] 
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= [
𝐈𝑝1 𝟎

𝟎′ 𝐈𝑝2
], 

where 𝐈𝑝1  is a 𝑝1 × 𝑝1 identity matrix, 𝐈𝑝2 is a 𝑝2 × 𝑝2 identity matrix, 𝟎 is a 𝑝1 × 𝑝2 zero 

matrix, and 𝟎′ is a 𝑝2 × 𝑝1 zero matrix. Solving for 𝚺11 and 𝚺22 

 𝚺11𝚺
11 + 𝚺12𝚺

21 = 𝐈𝑝1  

𝚺11
−1𝚺11𝚺

11 + 𝚺11
−1𝚺12𝚺

21 = 𝚺11
−1 

𝚺11 = 𝚺11
−1 − 𝚺11

−1𝚺12𝚺
21 

 

 

(A.9) 

and  

 𝚺21𝚺
12 + 𝚺22𝚺

22 = 𝐈𝑝2 

𝚺22
−1𝚺21𝚺

12 + 𝚺22
−1𝚺22𝚺

22 = 𝚺22
−1 

𝚺22 = 𝚺22
−1 − 𝚺22

−1𝚺21𝚺
12 

 

 

(A.10) 

Now, solving for 𝚺12 and 𝚺21 

 𝚺11𝚺
12 + 𝚺12𝚺

22 = 𝟎 

𝚺12 = −𝚺11
−1𝚺12𝚺

22 

 

(A.11) 

and  

 𝚺21𝚺
11 + 𝚺22𝚺

21 = 𝟎 

𝚺21 = −𝚺22
−1𝚺21𝚺

11. 

 

(A.12) 

Substituting (A.12) into (A.9), 

 𝚺11 = 𝚺11
−1 + 𝚺11

−1𝚺12𝚺22
−1𝚺21𝚺

11 

(𝐈 − 𝚺11
−1𝚺12𝚺22

−1𝚺21)𝚺
11 = 𝚺11

−1 

(𝚺11 − 𝚺12𝚺22
−1𝚺21)𝚺

11 = 𝐈 

𝚺11 = (𝚺11 − 𝚺12𝚺22
−1𝚺21)

−1. 

 

Similarly, substituting (A.11) into (A.10), 
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 𝚺22 = 𝚺22
−1 + 𝚺22

−1𝚺21𝚺11
−1𝚺12𝚺

22 

(𝐈 − 𝚺22
−1𝚺21𝚺11

−1𝚺12)𝚺
22 = 𝚺22

−1 

(𝚺22 − 𝚺21𝚺11
−1𝚺12)𝚺

22 = 𝐈 

𝚺22 = (𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1. 

 

Finally, solving for 𝚺12 and 𝚺21, 

 𝚺12 = −𝚺11
−1𝚺12(𝚺22 − 𝚺21𝚺11

−1𝚺12)
−1,  

and  

 𝚺21 = −𝚺22
−1𝚺21(𝚺11 − 𝚺12𝚺22

−1𝚺21)
−1.  

This completes the proof. ∎ 

 

Proof of Lemma 2.3 

 The joint distribution of 𝐱1 and 𝐱2 is given by 

 
𝑓(𝐱1, 𝐱2) = (2𝜋)−𝑝/2 |

𝚺11 𝚺12
𝚺21 𝚺22

|
−1/2

 

× exp(−
1

2
([
𝐱1
𝐱2
] − [

𝛍1
𝛍2
])

′

[
𝚺11 𝚺12
𝚺21 𝚺22

]
−1

([
𝐱1
𝐱2
] − [

𝛍1
𝛍2
])) . 

(A.13) 

Rewriting 𝚺−1 as 

 
[
𝚺11 𝚺12
𝚺21 𝚺22

]
−1

= [𝚺
11 𝚺12

𝚺21 𝚺22
]  

the quadratic form in (A.13) can be expanded as 

 𝑄(𝐱1, 𝐱2) = (𝐱1 − 𝛍1)
′𝚺11(𝐱1 − 𝛍1)

+ 2(𝐱1 − 𝛍1)
′𝚺12(𝐱𝟐 − 𝛍2)

+ (𝐱2 − 𝛍2)
′𝚺22(𝐱𝟐 − 𝛍2). 

(A.14) 

𝑄(𝐱1, 𝐱2) in (A.14) can be further factored as 
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𝑄(𝐱1, 𝐱2) = 𝑄1(𝐱1) + 𝑄2(𝐱1, 𝐱2), 

where 𝑄1(𝐱1) does not depend on 𝐱2 and 𝑄2(𝐱1, 𝐱2) contains terms that either depend 

solely on 𝐱2 or jointly on  𝐱1 and  𝐱2. Following this factoring,  

𝑄1(𝐱1) = (𝐱1 − 𝛍1)
′𝚺11(𝐱1 − 𝛍1) + 𝛍2

′ 𝚺22𝛍2 − 2(𝐱1 − 𝛍1)
′𝚺12𝛍2 

and  

𝑄2(𝐱1, 𝐱2) = 𝐱2
′ 𝚺22𝐱𝟐 − 2(𝛍2

′ 𝚺22𝐱2 + 𝛍1
′ 𝚺12𝐱2 − 𝐱1

′𝚺12𝐱2) 

If 𝑓(𝐱1) denotes the marginal distribution of 𝐱1, then 

𝑓(𝐱1) = ∫𝑓(𝐱1, 𝐱2)d𝐱2 

= (2𝜋)−𝑝/2|𝚺|−1/2exp {−
1

2
𝑄1(𝐱1)}∫exp {−

1

2
𝑄2(𝐱1, 𝐱2)𝑑𝐱2} 

 

(A.15) 

To evaluate the integral on the right-hand side of (A.15), complete the square on 𝐱2. Let 

𝛌 = 𝛍2 − (𝚺22)−1𝚺21(𝐱1 − 𝛍1), 

then ∫ exp {−
1

2
[(𝐱2 − 𝛌)′𝚺22(𝐱2 − 𝛌) − 𝛌′𝚺22𝛌]𝑑𝐱2} can be evaluated as 

exp {−
1

2
𝛌′𝚺22𝛌}∫exp {−

1

2
[(𝐱2 − 𝛌)′𝚺22(𝐱2 − 𝛌)]𝑑𝐱2} = |𝚺22|−1/2 exp {−

1

2
𝛌′𝚺22𝛌}. 

Combing the results, we obtain the marginal distribution of 𝐱1 

𝑓(𝐱1) = (2𝜋)−𝑝/2|𝚺|−1/2|𝚺22|−1/2exp {−
1

2
𝑄1(𝐱1)}  exp {−

1

2
𝛌′𝚺22𝛌} 

= (2𝜋)−𝑝/2|𝚺|−1/2|𝚺22|−1/2 exp {−
1

2
(𝐱1 − 𝛍1)

′𝚺𝟏𝟏
−1(𝐱1 − 𝛍1)} 

= (2𝜋)−𝑝/2|𝚺11|
−1/2 exp {−

1

2
(𝐱1 − 𝛍1)

′𝚺𝟏𝟏
−1(𝐱1 − 𝛍1)}, 

which is a multivariate normal distribution with mean 𝛍1 and covariance matrix 𝚺11. This 

completes the proof. ∎ 
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Proof of Theorem 2.1. 

Expanding the quadratic form, 𝑄(𝐱1, 𝐱1), in the joint distribution of 𝐱1 and 𝐱2 

 𝑄(𝐱1, 𝐱2) = (𝐱1 − 𝛍1)
′𝚺11(𝐱1 − 𝛍1)

+ 2(𝐱1 − 𝛍1)
′𝚺12(𝐱2 − 𝛍2)

+ (𝐱2 − 𝛍2)
′𝚺22(𝐱𝟐 − 𝛍2), 

 

where 𝚺11 is 

 𝚺11 = (𝚺11 − 𝚺12𝚺22
−1𝚺21)

−1 

= 𝚺11
−1 + 𝚺11

−1𝚺12(𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1𝚺21𝚺11
−1, 

 

𝚺22 is 

 𝚺22 = (𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1  

𝚺12 is 

 𝚺12 = −𝚺11
−1𝚺12(𝚺22 − 𝚺21𝚺11

−1𝚺12)
−1,  

and 𝚺21 is 

 𝚺21 = −𝚺22
−1𝚺21(𝚺11 − 𝚺12𝚺22

−1𝚺21)
−1.  

Substituting these expressions into 𝑄(𝐱1, 𝐱1),  

𝑄(𝐱1, 𝐱1) = (𝐱1 − 𝛍1)
′[𝚺11

−1 + 𝚺11
−1𝚺12(𝚺22 − 𝚺21𝚺11

−1𝚺12)
−1𝚺21𝚺11

−1](𝐱1 − 𝛍1)

− 2(𝐱1 − 𝛍1)
′[𝚺11

−1𝚺12(𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1](𝐱1 − 𝛍1)

+ (𝐱2 − 𝛍2)
′[(𝚺22 − 𝚺21𝚺11

−1𝚺12)
−1](𝐱𝟐 − 𝛍2). 

Rearranging terms, 
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𝑄(𝐱1, 𝐱1) = (𝐱1 − 𝛍1)
′𝚺11

−1(𝐱1 − 𝛍1)

+ (𝐱1 − 𝛍1)
′𝚺11

−1𝚺12(𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1𝚺21𝚺11
−1(𝐱1 − 𝛍1)

− 2(𝐱1 − 𝛍1)
′[𝚺11

−1𝚺12(𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1](𝐱1 − 𝛍1)

+ (𝐱2 − 𝛍2)
′[(𝚺22 − 𝚺21𝚺11

−1𝚺12)
−1](𝐱𝟐 − 𝛍2). 

Now, on the right-hand side of 𝑄(𝐱1, 𝐱1) we recognize that the last three terms are the 

expansion of a matrix quadratic form. Therefore, we can rewrite 𝑄(𝐱1, 𝐱1) as,  

 𝑄(𝐱1, 𝐱2) = (𝐱1 − 𝛍1)
′𝚺11

−1(𝐱1 − 𝛍1) + (𝐮 − 𝐯)′𝐀(𝐮 − 𝐯),  

where 

 𝐮 = (𝐱𝟐 − 𝛍2) 

𝐯 = 𝚺21𝚺11
−1(𝐱1 − 𝛍1) 

𝐀 = (𝚺22 − 𝚺21𝚺11
−1𝚺12)

−1. 

 

To continue with simplification, define  

 𝛌 = 𝛍2 + 𝚺21𝚺11
−1(𝐱1 − 𝛍1).  

and  

 𝛀 = 𝚺22 − 𝚺21𝚺11
−1𝚺12.  

Substituting terms back into the joint distribution,  

𝑓(𝐱1, 𝐱2) =
1

(2𝜋)𝑝/2 |
𝚺11 𝚺12
𝚺21 𝚺22

|
1/2

 

exp (−
1

2
𝑄(𝐱1, 𝐱2)) 

=
1

(2𝜋)𝑝/2|𝚺11|1/2|𝚺22 − 𝚺21𝚺11
−1𝚺12|1/2 

exp (−
1

2
𝑄(𝐱1, 𝐱2)) 

=
1

(2𝜋)𝑝/2|𝚺11|1/2 
exp (−

1

2
(𝐱1 − 𝛍1)

′𝚺11
−1(𝐱1 − 𝛍1)) 
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  ×
1

(2𝜋)𝑝/2|𝛀|1/2 
exp (−

1

2
(𝐱2 − 𝛌)′𝛀−1(𝐱2 − 𝛌)). 

Importantly, here we can recognize that the first term in the product of is the marginal 

distribution of 𝐱1. Now, using the definition of conditional probability, we can derive the 

conditional distribution of 𝐱2 given 𝐱1, 

 
𝑓(𝐱2|𝐱1) =

𝑓(𝐱2, 𝐱1)

𝑓(𝐱1)
 

=
1

(2𝜋)𝑝/2|𝛀|1/2 
exp (−

1

2
(𝐱2 − 𝛌)′𝛀−1(𝐱2 − 𝛌)) 

 

with mean vector 𝛌 and covariance matrix 𝛀. This completes the proof. ∎ 
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APPENDIX B 

VARIANCE ESTIMATES USING MULTIVARIATE DELTA METHOD 

 

 For the purpose of the present study, only the variance estimates of the simple 

mediation model presented in Figure (1.3) and the moderated mediation model presented 

in Figure (1.4) (Model 5) will be derived. From Equation (1.53), the variance of an indirect-

type effect can be approximated using the multivariate delta method given by 

 
𝑉𝑎𝑟[𝑔(𝛉̂𝑛) − 𝑔(𝛉)] = 𝐝′𝚺̂(𝛉̂)𝐝⏟    

first−order

+
1

2
tr [(𝐇𝚺̂(𝛉̂))

2

]
⏟          

second−order

. (B.1) 

Recall, for a simple mediation model, the (unconditional) indirect effect is given by 

 𝑔(𝛃|𝛎) = β𝑀∙𝑋β𝑌∙𝑀, (B.2) 

Here, 𝛉 = [β𝑀∙𝑋, β𝑌∙𝑀]
′, 𝛉̂ = [β̂𝑀∙𝑋, β̂𝑌∙𝑀]

′
, and  

 
𝚺̂(𝛉̂) = [

𝑉𝑎𝑟(β̂𝑀∙𝑋) 0

0 𝑉𝑎𝑟(β̂𝑌∙𝑀)
].  

The gradient vector 𝐝 of (B.2) given by 

 
𝐝 = [

β𝑌∙𝑀
β𝑀∙𝑋

]  

and the Hessian matrix 𝐇 of (B.2) is given by 

𝐇 = [
0 1
1 0

]. 

Therefore, applying (B.1), the variance estimate under the multivariate delta method for a 

simple mediation model is 

𝑉𝑎𝑟[𝑔(𝛃̂|𝛎)] = β̂𝑌∙𝑀
2 𝑉𝑎𝑟(β̂𝑀∙𝑋) + β𝑀∙𝑋

2 𝑉𝑎𝑟(β̂𝑌∙𝑀)⏟                      
first−order

+ β̂𝑌∙𝑀
2 β𝑀∙𝑋

2⏟      
second−order

. 

Similarly, for the moderated mediation model, the (conditional) indirect effect is given by 
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 𝑔(𝛃|𝛎) = (β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊)(β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊). (B.3) 

In (B.3), 𝛉 = [β𝑀∙𝑋 , β𝑀∙𝑋𝑊, β𝑌∙𝑀, β𝑌∙𝑀𝑊]
′, 𝛉̂ = [β̂𝑀∙𝑋, β̂𝑀∙𝑋𝑊, β̂𝑌∙𝑀, β̂𝑌∙𝑀𝑊]

′
, and  

𝚺̂(𝛉̂) =

[
 
 
 
 

𝑉𝑎𝑟(β̂𝑀∙𝑋) 𝐶𝑜𝑣(β̂𝑀∙𝑋 , β̂𝑀∙𝑋𝑊) 0 0

𝐶𝑜𝑣(β̂𝑀∙𝑋, β̂𝑀∙𝑋𝑊) 𝑉𝑎𝑟(β̂𝑀∙𝑋𝑊) 0 0

0 0 𝑉𝑎𝑟(β̂𝑌∙𝑀) 𝐶𝑜𝑣(β̂𝑌∙𝑀, β̂𝑌∙𝑀𝑊)

0 0 𝐶𝑜𝑣(β̂𝑌∙𝑀, β̂𝑌∙𝑀𝑊) 𝑉𝑎𝑟(β̂𝑌∙𝑀𝑊) ]
 
 
 
 

 

The gradient vector 𝐝 of (B.3) given by 

 

𝐝 =

[
 
 
 
β𝑌∙𝑀 + β𝑌∙𝑀𝑊𝑊

β𝑌∙𝑀𝑊 + β𝑌∙𝑀𝑊𝑊
2

β𝑀∙𝑋 + β𝑀∙𝑋𝑊𝑊

β𝑀∙𝑋𝑊+ β𝑀∙𝑋𝑊𝑊
2]
 
 
 

  

and the Hessian matrix 𝐇 of (B.3) is given by 

𝐇 = [

0 0 1 𝑊
0 0 𝑊 𝑊2

1 𝑊 0 0
𝑊 𝑊2 0 0

]. 

Applying (B.1) and simplifying, the variance estimate under the multivariate delta method 

for the moderated mediation model is 

𝑉𝑎𝑟[𝑔(𝛃̂|𝛎)] =
(β̂𝑌∙𝑀 + β̂𝑌∙𝑀𝑊)

2
(𝑉𝑎𝑟(β̂𝑀∙𝑋) + 2𝐶𝑜𝑣(β̂𝑀∙𝑋 , β̂𝑀∙𝑋𝑊)𝑊 + 𝑉𝑎𝑟(β̂𝑀∙𝑋𝑊)𝑊

2)

+(β̂𝑀∙𝑋 + β̂𝑀∙𝑋𝑊)
2
(𝑉𝑎𝑟(β̂𝑌∙𝑀) + 2𝐶𝑜𝑣(β̂𝑌∙𝑀, β̂𝑌∙𝑀𝑊)𝑊 + 𝑉𝑎𝑟(β̂𝑌∙𝑀𝑊)𝑊

2)⏟                                                
first−order

 

+ (𝑉𝑎𝑟(β̂𝑀∙𝑋) + 2𝐶𝑜𝑣(β̂𝑀∙𝑋, β̂𝑀∙𝑋𝑊)𝑊 + 𝑉𝑎𝑟(β̂𝑀∙𝑋𝑊)𝑊
2)

× (𝑉𝑎𝑟(β̂𝑌∙𝑀) + 2𝐶𝑜𝑣(β̂𝑌∙𝑀, β̂𝑌∙𝑀𝑊)𝑊 + 𝑉𝑎𝑟(β̂𝑌∙𝑀𝑊)𝑊
2)⏟                                      

second−order

. 
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APPENDIX C 

SUPPLEMENTAL FIGURES FROM SIMULATION 1 

 

This Appendix presents the supplemental figures from Simulation Study 1 described in 

Chapter 4. For each of the models below, the acronyms for the metrics are: EB = empirical 

bias, CIL = confidence interval length, CP = coverage probability, RR = rejection rate, and 

MSE = mean squared error. Similarly, the methods are abbreviated as: BC-Boot = bias-

corrected bootstrap, Bayes-1 = Bayesian bootstrap with mean estimator, Bayes-2 = 

Bayesian bootstrap with median estimator, Delta-1 = first-order delta method, and Delta-2 

= second-order delta method.  

 

1. Model: Mediation, Mediator: Continuous, Endogenous: Continuous 

 

Empirical bias: 
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Confidence interval length: 

 

 

Coverage probability: 
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Rejection rate: 

 

 

Mean squared error: 
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2. Model: Mediation, Mediator: Continuous, Endogenous: Categorical 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

3. Model: Mediation, Mediator: Categorical, Endogenous: Continuous 

 

Empirical bias:  
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Confidence interval length: 

 

 

Coverage probability: 
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Rejection rate: 

 

 

Mean squared error: 
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4. Model: Mediation, Mediator: Categorical, Endogenous: Categorical 

 

Empirical bias:  

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

5. Model: Moderated Mediation, Mediator: Continuous, Endogenous: Continuous 

 

Empirical bias:  
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Confidence interval length: 

 

 

Coverage probability: 
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Rejection rate: 

 

 

Mean squared error: 
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6. Model: Moderated Mediation, Mediator: Continuous, Endogenous: Categorical 

 

Empirical bias:  

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

7. Model: Moderated Mediation, Mediator: Categorical, Endogenous: Continuous 

 

Empirical bias:  
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Confidence interval length: 

 

 

Coverage probability: 
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Rejection rate: 

 

 

Mean squared error: 
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8. Model: Moderated Mediation, Mediator: Categorical, Endogenous: Categorical 

 

Empirical bias:  

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 
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APPENDIX D 

SUPPLEMENTAL FIGURES FROM SIMULATION 2 

 

This Appendix presents the supplemental figures from Simulation Study 2 described in 

Chapter 4. For each of the models below, the acronyms for the metrics are: EB = empirical 

bias, CIL = confidence interval length, CP = coverage probability, RR = rejection rate, MSE 

= mean squared error, FMI = fraction of missing information. The missing data methods 

are abbreviated as: CC = complete case analysis, DA = data augmentation, FCS-BB = fully 

conditional specification with Bayesian bootstrapping, FCS-BB* = modified fully 

conditional specification with Bayesian bootstrapping, FCS-BB-PI = fully conditional 

specification with Bayesian bootstrapping – passive imputation, FCS-BB-JAV = fully 

conditional specification with Bayesian bootstrapping – just another variable,  MBE = 

model-based estimation, MICE = multiple imputation by chained equations, Mean = mean 

imputation. 
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1. Model: Mediation, Mediator: Continuous, Endogenous: Continuous 

 

Empirical bias:

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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2. Model: Mediation, Mediator: Continuous, Endogenous: Categorical 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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3. Model: Mediation, Mediator: Categorical, Endogenous: Continuous 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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4. Model: Mediation, Mediator: Categorical, Endogenous: Categorical 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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5. Model: Moderated Mediation, Mediator: Continuous, Endogenous: Continuous 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

FMI:  
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6. Model: Moderated Mediation, Mediator: Continuous, Endogenous: Categorical 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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7. Model: Moderated Mediation, Mediator: Categorical, Endogenous: Continuous 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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8. Moderated Model: Mediation, Mediator: Categorical, Endogenous: Categorical 

 

Empirical bias: 

 

 

Confidence interval length: 
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Coverage probability: 

 

 

Rejection rate: 
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Mean squared error: 

 

 

Fraction of missing information: 
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